Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries

被引:0
作者
Yu, Xingmiao [1 ,2 ]
Xiang, Jianfei [1 ,2 ]
Shi, Qitao [3 ]
Li, Luwen [1 ,2 ]
Wang, Jiaqi [1 ,2 ]
Liu, Xiangqi [1 ,2 ]
Zhang, Cheng [1 ,2 ]
Wang, Zhipeng [1 ,2 ]
Zhang, Junjin [1 ,2 ]
Hu, Huimin [1 ,2 ]
Bachmatiuk, Alicja [4 ]
Trzebicka, Barbara [5 ]
Chen, Jin [1 ,2 ]
Guo, Tianxiao [1 ,2 ]
Shen, Yanbin [3 ]
Choi, Jinho [1 ,2 ,4 ,6 ]
Huang, Cheng [1 ,2 ,6 ,7 ]
Rummeli, Mark H. [1 ,2 ,5 ,6 ,8 ,9 ,10 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Mat Petr & Chem Ind, Suzhou 215006, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, CAS Ctr Excellence Nanosci, i Lab, Suzhou 215123, Peoples R China
[4] IFW Dresden, Inst Complex Mat, 20 Helmholtz Str, D-01069 Dresden, Germany
[5] PORT Polish Ctr Technol Dev, LUKASIEWICZ Res Network, Stablowicka 147, PL-54066 Wroclaw, Poland
[6] Soochow Univ, Key Lab Core Technol High Specif Energy Battery, Suzhou 215006, Peoples R China
[7] Suzhou City Univ, Coll Opt & Elect Informat, Phys & Energy Dept, Suzhou 215104, Peoples R China
[8] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215123, Peoples R China
[9] Polish Acad Sci, Ctr Polymer & Carbon Mat, M Curie Sklodowskiej 34, PL-41819 Zabrze, Poland
[10] VSB Tech Univ Ostrava, Inst Environm Technol IET, Ctr Energy & Environm Technol CEET, 17 Listopadu 15, Ostrava 70833, Czech Republic
基金
中国国家自然科学基金;
关键词
anode; atomic Al-doping; carbon nanocage; fast-charging; FLUOROETHYLENE CARBONATE; LOW-COST; GRAPHENE; BORON; NITROGEN; NANOSHEETS; CAPACITY; OXIDE; PHOSPHORUS; CHALLENGES;
D O I
10.1002/smll.202406309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (approximate to 300 mAh g(-1) at 10 A g(-1)) and a prolonged fast-charging lifespan (862.82 mAh g(-1) at 5 A g(-1) after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs.
引用
收藏
页数:11
相关论文
共 55 条
  • [1] Pseudocapacitive oxide materials for high-rate electrochemical energy storage
    Augustyn, Veronica
    Simon, Patrice
    Dunn, Bruce
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1597 - 1614
  • [2] Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries
    Cao, Bin
    Zhang, Qing
    Liu, Huan
    Xu, Bin
    Zhang, Shilin
    Zhou, Tengfei
    Mao, Jianfeng
    Pang, Wei Kong
    Guo, Zaiping
    Li, Ang
    Zhou, Jisheng
    Chen, Xiaohong
    Song, Huaihe
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (25)
  • [3] Disordered, Large Interlayer Spacing, and Oxygen-Rich Carbon Nanosheets for Potassium Ion Hybrid Capacitor
    Chen, Jiangtao
    Yang, Bingjun
    Hou, Hongjun
    Li, Hongxia
    Liu, Li
    Zhang, Li
    Yan, Xingbin
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [4] Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell
    Chen, Ming
    Zha, Ru-Hua
    Yuan, Zhong-Yong
    Jing, Qiang-Shan
    Huang, Zhong-Yuan
    Yang, Xing-Kun
    Yang, Shu-Ming
    Zhao, Xiang-Hua
    Xu, Dong-Li
    Zou, Guo-Dong
    [J]. CHEMICAL ENGINEERING JOURNAL, 2017, 313 : 791 - 800
  • [5] Chen W., 2019, ADV ENERGY MATER, V9
  • [6] Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
    Chmiola, John
    Largeot, Celine
    Taberna, Pierre-Louis
    Simon, Patrice
    Gogotsi, Yury
    [J]. SCIENCE, 2010, 328 (5977) : 480 - 483
  • [7] Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity
    Choi, Chang Hyuck
    Park, Sung Hyeon
    Woo, Seong Ihl
    [J]. ACS NANO, 2012, 6 (08) : 7084 - 7091
  • [8] XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries
    Dedryvere, R.
    Leroy, S.
    Martinez, H.
    Blanchard, F.
    Lemordant, D.
    Gonbeau, D.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (26) : 12986 - 12992
  • [9] A simple approach to the synthesis of BCN graphene with high capacitance
    Dou, Shuo
    Huang, Xiaobing
    Ma, Zhaoling
    Wu, Jianghong
    Wang, Shuangyin
    [J]. NANOTECHNOLOGY, 2015, 26 (04)
  • [10] A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes
    Ensling, David
    Stjerndahl, Marten
    Nyten, Anton
    Gustafsson, Torbjorn
    Thomas, John O.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (01) : 82 - 88