High-entropy alloy nanomaterials for electrocatalysis

被引:7
作者
Cui, Mingjin [1 ,2 ,3 ,4 ]
Zhang, Ying [1 ,2 ,3 ]
Xu, Bo [1 ,2 ,3 ]
Xu, Fei [1 ,2 ,3 ]
Chen, Jianwei [1 ,2 ,3 ]
Zhang, Shaoyin [1 ,2 ,3 ]
Chen, Chunhong [1 ,2 ,3 ]
Luo, Zhimin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays SKLO, Coll Elect Opt,Sch Chem & Life Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, Coll Elect & Opt Engn,Sch Chem & Life Sci, Jiangsu Key Lab Smart Biomat & Theranost Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[4] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; SOLID-SOLUTIONS; NANOPARTICLES; STABILITY; EVOLUTION; DESIGN; MICROSTRUCTURE; CATALYSTS; PROGRESS; ELEMENT;
D O I
10.1039/d4cc04075a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy alloys (HEAs) exhibit a remarkable capacity to modulate geometric and electronic structures for the construction of catalysts with unpredictable and exceptional performance, and have attracted substantial acclaim within the domain of materials science. In this comprehensive review, we present a thorough summary of the synthesis and multiple applications of HEAs in the realm of electrocatalysis. Our review encompasses the diverse synthesis methodologies of HEA nanomaterials and their pivotal roles in amplifying electrocatalytic performance in hydrogen evolution reactions (HERs), oxygen evolution reactions (OERs), oxygen reduction reactions (ORRs), alcohol oxidation reactions (AORs), and CO2 reduction reactions (CO2RRs), and more. Furthermore, we address the intricate challenges and promising avenues that lie ahead in this research area. Reviewing recent breakthroughs, emerging paradigms, and prospects on the horizon, it becomes increasingly evident that HEAs harbor immense potential to reshape the landscape of energy conversion and storage, and emerge as paramount contenders for the development of cutting-edge electrocatalytic materials that hold the key to a sustainable energy future. Synthetic strategies and electrocatalytic applications of high-entropy alloys.
引用
收藏
页码:12615 / 12632
页数:18
相关论文
共 153 条
[81]   Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy [J].
Maiti, Soumyadipta ;
Steurer, Walter .
ACTA MATERIALIA, 2016, 106 :87-97
[82]   Plasma arc discharge synthesis of multicomponent Co-Cr-Cu-Fe-Ni nanoparticles [J].
Mao, Aiqin ;
Xiang, Houzheng ;
Ran, Xueqin ;
Li, Yibu ;
Jin, Xia ;
Yu, Haiyun ;
Gu, Xiaolong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 775 :1177-1183
[83]   Effect of aluminum element on microstructure evolution and properties of multicomponent Al-Co-Cr-Cu-Fe-Ni nanoparticles [J].
Mao, Aiqin ;
Ding, Peipei ;
Quan, Feng ;
Zhang, Tianchi ;
Ran, Xueqin ;
Li, Yibu ;
Jin, Xia ;
Gu, Xiaolong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 :1167-1175
[84]   Designing Magnetism in High Entropy Oxides [J].
Mazza, Alessandro R. ;
Skoropata, Elizabeth ;
Sharma, Yogesh ;
Lapano, Jason ;
Heitmann, Thomas W. ;
Musico, Brianna L. ;
Keppens, Veerle ;
Gai, Zheng ;
Freeland, John W. ;
Charlton, Timothy R. ;
Brahlek, Matthew ;
Moreo, Adriana ;
Dagotto, Elbio ;
Ward, Thomas Z. .
ADVANCED SCIENCE, 2022, 9 (10)
[85]   High-entropy intermetallics: emerging inorganic materials for designing high-performance catalysts [J].
Nakaya, Yuki ;
Furukawa, Shinya .
CHEMICAL SCIENCE, 2024, 15 (32) :12644-12666
[86]   High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization [J].
Nellaiappan, Subramanian ;
Katiyar, Nirmal Kumar ;
Kumar, Ritesh ;
Parui, Arko ;
Malviya, Kirtiman Deo ;
Pradeep, K. G. ;
Singh, Abhishek K. ;
Sharma, Sudhanshu ;
Tiwary, Chandra Sekhar ;
Biswas, Krishanu .
ACS CATALYSIS, 2020, 10 (06) :3658-3663
[87]   Self-Reconstruction of Sulfate-Containing High Entropy Sulfide for Exceptionally High-Performance Oxygen Evolution Reaction Electrocatalyst [J].
Nguyen, Thi Xuyen ;
Su, Yen-Hsun ;
Lin, Chia-Chun ;
Ting, Jyh-Ming .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)
[88]   Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method [J].
Okejiri, Francis ;
Zhang, Zihao ;
Liu, Jixing ;
Liu, Miaomiao ;
Yang, Shize ;
Dai, Sheng .
CHEMSUSCHEM, 2020, 13 (01) :111-115
[89]   High-entropy alloys: a critical assessment of their founding principles and future prospects [J].
Pickering, E. J. ;
Jones, N. G. .
INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (03) :183-202
[90]   Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography [J].
Pradeep, K. G. ;
Wanderka, N. ;
Choi, P. ;
Banhart, J. ;
Murty, B. S. ;
Raabe, D. .
ACTA MATERIALIA, 2013, 61 (12) :4696-4706