Chiral Raman coupling for spin-orbit coupling in ultracold atomic gases

被引:0
作者
Shan, Biao [1 ]
Huang, Lianghui [1 ]
Zhao, Yuhang [1 ]
Bian, Guoqi [1 ]
Wang, Pengjun [1 ]
Han, Wei [1 ]
Zhang, Jing [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
REALIZATION;
D O I
10.1103/PhysRevA.111.023323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spin-orbit coupling (SOC) in ultracold atoms is engineered by light-atom interaction, such as two-photon Raman transitions between two Zeeman spin states. In this paper, we propose and experimentally realize chiral Raman coupling to generate SOC in ultracold atomic gases, which exhibits high quantization axis direction dependence. Chiral Raman coupling for SOC is created by chiral light-atom interaction, in which a circularly polarized electromagnetic field generated by two Raman lasers interacts with two Zeeman spin states delta mF = +/- 1 (chiral transition). We present a simple scheme of chiral one-dimensional (1D) Raman coupling by employing two Raman lasers at an intersecting angle 90 degrees with the proper polarization configuration. In this case, Raman coupling for SOC exists in one direction of the magnetic quantization axis and disappears in the opposite direction. Then we extend this scheme into a chiral two-dimensional (2D) optical square Raman lattice configuration to generate the 1D SOC. There are two orthogonal 1D SOCs, which exist in the positive and negative directions of the magnetic quantization axis respectively. This case is compared with 2D SOC based on the nonchiral 2D optical Raman lattice scheme for studying the topological energy band. This paper broadens the horizon for understanding chiral physics and simulating topological quantum systems.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Synthetic 3D Spin-Orbit Coupling [J].
Anderson, Brandon M. ;
Juzeliunas, Gediminas ;
Galitski, Victor M. ;
Spielman, I. B. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[2]   Observation of chiral currents with ultracold atoms in bosonic ladders [J].
Atala, Marcos ;
Aidelsburger, Monika ;
Lohse, Michael ;
Barreiro, Julio T. ;
Paredes, Belen ;
Bloch, Immanuel .
NATURE PHYSICS, 2014, 10 (08) :588-593
[3]   Synthetic chiral light for efficient control of chiral light-matter interaction [J].
Ayuso, David ;
Neufeld, Ofer ;
Ordonez, Andres F. ;
Decleva, Piero ;
Lerner, Gavriel ;
Cohen, Oren ;
Ivanov, Misha ;
Smirnova, Olga .
NATURE PHOTONICS, 2019, 13 (12) :866-+
[4]   Realization of space-dependent interactions by an optically controlled magnetic p-wave Feshbach resonance in degenerate Fermi gases [J].
Bian, Guoqi ;
Huang, Lianghui ;
Li, Donghao ;
Meng, Zengming ;
Chen, Liangchao ;
Wang, Pengjun ;
Zhang, Jing .
PHYSICAL REVIEW A, 2022, 106 (02)
[5]   Long-Lived Spin-Orbit-Coupled Degenerate Dipolar Fermi Gas [J].
Burdick, Nathaniel Q. ;
Tang, Yijun ;
Lev, Benjamin L. .
PHYSICAL REVIEW X, 2016, 6 (03)
[6]  
[柴世杰 Chai Shijie], 2012, [量子光学学报, Acta Sinica Quantum Optica], V18, P171
[7]   Tailoring the chirality of magnetic domain walls by interface engineering [J].
Chen, Gong ;
Ma, Tianping ;
N'Diaye, Alpha T. ;
Kwon, Heeyoung ;
Won, Changyeon ;
Wu, Yizheng ;
Schmid, Andreas K. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Spin-Orbital-Angular-Momentum Coupled Bose-Einstein Condensates [J].
Chen, H. -R. ;
Lin, K. -Y. ;
Chen, P. -K. ;
Chiu, N. -C. ;
Wang, J. -B. ;
Chen, C. -A. ;
Huang, P. -P. ;
Yip, S. -K. ;
Kawaguchi, Yuki ;
Lin, Y. -J. .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[9]   Observation of intrinsic chiral bound states in the continuum [J].
Chen, Yang ;
Deng, Huachun ;
Sha, Xinbo ;
Chen, Weijin ;
Wang, Ruize ;
Chen, Yu-Hang ;
Wu, Dong ;
Chu, Jiaru ;
Kivshar, Yuri S. S. ;
Xiao, Shumin ;
Qiu, Cheng-Wei .
NATURE, 2023, 613 (7944) :474-+
[10]   Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas [J].
Cheuk, Lawrence W. ;
Sommer, Ariel T. ;
Hadzibabic, Zoran ;
Yefsah, Tarik ;
Bakr, Waseem S. ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)