A Review of Application of Deep Learning in Endoscopic Image Processing

被引:0
|
作者
Nie, Zihan [1 ,2 ]
Xu, Muhao [1 ,2 ]
Wang, Zhiyong [1 ,2 ]
Lu, Xiaoqi [1 ,2 ]
Song, Weiye [1 ,2 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[2] Shandong Univ, Key Lab High Efficiency & Clean Mech Manufacture, Minist Educ, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; endoscopy; image analysis; convolutional neural networks (CNNs); ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORK; WHITE-LIGHT; SEGMENTATION; ANGIOGRAPHY; DIAGNOSIS; FUTURE; IVUS;
D O I
10.3390/jimaging10110275
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Deep learning, particularly convolutional neural networks (CNNs), has revolutionized endoscopic image processing, significantly enhancing the efficiency and accuracy of disease diagnosis through its exceptional ability to extract features and classify complex patterns. This technology automates medical image analysis, alleviating the workload of physicians and enabling a more focused and personalized approach to patient care. However, despite these remarkable achievements, there are still opportunities to further optimize deep learning models for endoscopic image analysis, including addressing limitations such as the requirement for large annotated datasets and the challenge of achieving higher diagnostic precision, particularly for rare or subtle pathologies. This review comprehensively examines the profound impact of deep learning on endoscopic image processing, highlighting its current strengths and limitations. It also explores potential future directions for research and development, outlining strategies to overcome existing challenges and facilitate the integration of deep learning into clinical practice. Ultimately, the goal is to contribute to the ongoing advancement of medical imaging technologies, leading to more accurate, personalized, and optimized medical care for patients.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A systematic review on application of deep learning in digestive system image processing
    Huangming Zhuang
    Jixiang Zhang
    Fei Liao
    The Visual Computer, 2023, 39 (6) : 2207 - 2222
  • [2] A systematic review on application of deep learning in digestive system image processing
    Zhuang, Huangming
    Zhang, Jixiang
    Liao, Fei
    VISUAL COMPUTER, 2023, 39 (06): : 2207 - 2222
  • [3] Review of the deep learning for food image processing
    Niu, Chenrui
    Ying, Xiayang
    Pei, Gan
    Hu, Menghan
    Zhai, Guangtao
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2024, 17 (05) : 15 - 30
  • [4] Deep learning models for digital image processing: a review
    R. Archana
    P. S. Eliahim Jeevaraj
    Artificial Intelligence Review, 2024, 57
  • [5] Deep learning models for digital image processing: a review
    Archana, R.
    Jeevaraj, P. S. Eliahim
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (01)
  • [6] The Application of Deep Learning and Image Processing Technology in Laser Positioning
    Lin, Chern-Sheng
    Huang, Yu-Chia
    Chen, Shih-Hua
    Hsu, Yu-Liang
    Lin, Yu-Chen
    APPLIED SCIENCES-BASEL, 2018, 8 (09):
  • [7] Application of deep learning for retinal image analysis: A review
    Badar, Maryam
    Haris, Muhammad
    Fatima, Anam
    COMPUTER SCIENCE REVIEW, 2020, 35
  • [8] Review on Deep Learning Algorithms for Heterogeneous Medical Image Processing
    Ma Z.-B.
    Mi Y.
    Zhang B.
    Zhang Z.
    Wu J.-Y.
    Huang H.-W.
    Wang W.-D.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10): : 4870 - 4915
  • [9] Application of deep reinforcement learning in various image processing tasks: a survey
    Tadesse, Daniel Moges
    Kebede, Samuel Rahimeto
    Debele, Taye Girma
    Waldamichae, Fraol Gelana
    EVOLVING SYSTEMS, 2025, 16 (01)
  • [10] Application of deep learning and image processing analysis of photographs for amblyopia screening
    Murali, Kaushik
    Krishna, Viswesh
    Krishna, Vrishab
    Kumari, B.
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (07) : 1407 - 1410