Predicting arbitrary state properties from single Hamiltonian quench dynamics

被引:1
作者
Liu, Zhenhuan [1 ]
Hao, Zihan [1 ]
Hu, Hong-Ye [2 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
中国国家自然科学基金;
关键词
Quantum electronics - Quantum optics - Rydberg states;
D O I
10.1103/PhysRevResearch.6.043118
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Analog quantum simulation is an essential routine for quantum computing and plays a crucial role in studying quantum many-body physics. Typically, the quantum evolution of an analog simulator is largely determined by its physical characteristics, lacking the precise control or versatility of quantum gates. This limitation poses challenges in extracting physical properties on analog quantum simulators, an essential step of quantum simulations. To address this issue, we introduce the Hamiltonian shadow protocol, which uses a single quench Hamiltonian for estimating arbitrary state properties, eliminating the need for ancillary systems and random unitaries. Additionally, we derive the sample complexity of this protocol and show that it performs comparably to the classical shadow protocol. The Hamiltonian shadow protocol does not require sophisticated control and can be applied to a wide range of analog quantum simulators. We demonstrate its utility through numerical demonstrations with Rydberg atom arrays under realistic parameter settings. The new protocol significantly broadens the application of randomized measurements for analog quantum simulators without precise control and ancillary systems.
引用
收藏
页数:23
相关论文
共 54 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]  
Akhtar AA, 2023, QUANTUM-AUSTRIA, V7
[3]  
[Anonymous], About us
[4]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Shallow Shadows: Expectation Estimation Using Low-Depth Random Clifford Circuits [J].
Bertoni, Christian ;
Haferkamp, Jonas ;
Hinsche, Marcel ;
Ioannou, Marios ;
Eisert, Jens ;
Pashayan, Hakop .
PHYSICAL REVIEW LETTERS, 2024, 133 (02)
[7]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[8]   A quantum processor based on coherent transport of entangled atom arrays [J].
Bluvstein, Dolev ;
Levine, Harry ;
Semeghini, Giulia ;
Wang, Tout T. ;
Ebadi, Sepehr ;
Kalinowski, Marcin ;
Keesling, Alexander ;
Maskara, Nishad ;
Pichler, Hannes ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2022, 604 (7906) :451-+
[9]   Probing Renyi entanglement entropy via randomized measurements [J].
Brydges, Tiff ;
Elben, Andreas ;
Jurcevic, Petar ;
Vermersch, Benoit ;
Maier, Christine ;
Lanyon, Ben P. ;
Zoller, Peter ;
Blatt, Rainer ;
Roos, Christian F. .
SCIENCE, 2019, 364 (6437) :260-+
[10]   Rotational Coherence Times of Polar Molecules in Optical Tweezers [J].
Burchesky, Sean ;
Anderegg, Loic ;
Bao, Yicheng ;
Yu, Scarlett S. ;
Chae, Eunmi ;
Ketterle, Wolfgang ;
Ni, Kang-Kuen ;
Doyle, John M. .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)