SCALABLE SYMMETRIC TUCKER TENSOR DECOMPOSITION

被引:0
作者
Jin, Ruhui [1 ]
Kileel, Joe [1 ]
Kolda, Tamara g. [2 ]
Ward, Rachel [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] MathSci Ai, Dublin, CA 94568 USA
关键词
symmetric tensor; Tucker decomposition; scalable algorithm; MULTILINEAR RANK APPROXIMATION; INDEPENDENT COMPONENT ANALYSIS; MATRIX; COMPUTATION; ALGORITHMS; SKEWNESS;
D O I
10.1137/23M1582928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the best low-rank Tucker decomposition of symmetric tensors. The motivating application is decomposing higher-order multivariate moments. Moment tensors have special structure and are important to various data science problems. We advocate for a projected graas computation schemes. Most importantly, we develop scalable adaptations of the basic PGD and HOEVD methods to decompose sample moment tensors. With the help of implicit and streaming techniques, we evade the overhead cost of building and storing the moment tensor. Such reductions make computing the Tucker decomposition realizable for large data instances in high dimensions. Numerical experiments demonstrate the efficiency of the algorithms and the applicability of moment tensor decompositions to real-world datasets. Finally we study the convergence on the Grassmannian manifold and prove that the update sequence derived by the PGD solver achieves first- and second-order criticality.
引用
收藏
页码:1746 / 1781
页数:36
相关论文
共 72 条
[1]   Anomaly detection in scientific data using joint statistical moments [J].
Aditya, Konduri ;
Kolla, Hemanth ;
Kegelmeyer, W. Philip ;
Shead, Timothy M. ;
Ling, Julia ;
Davis, Warren L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 387 :522-538
[2]   Randomized Algorithms for Computation of Tucker Decomposition and Higher Order SVD (HOSVD) [J].
Ahmadi-Asl, Salman ;
Abukhovich, Stanislav ;
Asante-Mensah, Maame G. ;
Cichocki, Andrzej ;
Phan, Anh Huy ;
Tanaka, Tohishisa ;
Oseledets, Ivan .
IEEE ACCESS, 2021, 9 :28684-28706
[3]   Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations [J].
Alter, O ;
Golub, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17559-17564
[4]  
Anandkumar A, 2014, J MACH LEARN RES, V15, P2773
[5]  
B. SAVAS, 2009, Best Low Rank Tensor Approximation
[6]   Algorithm 1036: ATC, An Advanced Tucker Compression Library for Multidimensional Data [J].
Baert, Wouter ;
Vannieuwenhoven, Nick .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (02)
[7]   Normal inverse Gaussian distributions and stochastic volatility modelling [J].
BarndorffNielsen, OE .
SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) :1-13
[8]   Nearest comoment estimation with unobserved factors [J].
Boudt, Kris ;
Cornilly, Dries ;
Verdonck, Tim .
JOURNAL OF ECONOMETRICS, 2020, 217 (02) :381-397
[9]  
Boumal N., 2023, An introduction to optimization on smooth manifolds
[10]   Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach [J].
Briec, Walter ;
Kerstens, Kristiaan ;
Jokung, Octave .
MANAGEMENT SCIENCE, 2007, 53 (01) :135-149