Constrained Multiobjective Decomposition Evolutionary Algorithm for UAV-Assisted Mobile Edge Computing Networks

被引:1
作者
Zhang, Lei [1 ,2 ,3 ]
Wen, Fangqing [1 ,3 ]
Zhang, Qinghe [1 ,3 ]
Gui, Guan [4 ]
Sari, Hikmet [4 ]
Adachi, Fumiyuki [5 ]
机构
[1] China Three Gorges Univ, Hubei Key Lab Intelligent Vis Based Monitoring Hyd, Yichang 443002, Peoples R China
[2] Hubei Univ Automot Technol, Inst Vehicle Informat Control & Network Technol, Shiyan 442002, Peoples R China
[3] China Three Gorges Univ, Coll Comp & Informat Technol, Yichang 443005, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[5] Tohoku Univ, Int Res Inst Disaster Sci, Sendai 9800845, Japan
基金
中国国家自然科学基金;
关键词
Task analysis; Optimization; Energy consumption; Internet of Things; Autonomous aerial vehicles; Convergence; Delays; 6G; constrained multiobjective optimization; evolutionary computation; mobile edge computing (MEC); unmanned aerial vehicles (UAVs); RESOURCE; COMMUNICATION; OPTIMIZATION; SWARM;
D O I
10.1109/JIOT.2024.3417009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing significance of unmanned aerial vehicles (UAVs) in mobile edge computing (MEC) has captured considerable attention. Nevertheless, the effectiveness of UAVs-assisted MEC networks is hampered by challenges, such as limited communication capacity and onboard power. To tackle these issues, this study develops a constrained multiobjective optimization model designed to enhance the performance of UAVs-assisted MEC networks, focusing on system capacity, energy consumption, and task latency. As a result, this problem manifests as a complex constrained multiobjective optimization problem. The study then proposes a constrained multiobjective decomposition evolutionary algorithm (CMODEA) with low-computational complexity. This algorithm employs an adaptive individual comparison strategy, balancing diversity and convergence, and integrates an optimally guided differential evolution strategy for efficiently approximating optimal solutions. Additionally, it incorporates an adaptive constraint handling method, effectively managing existing constraints. The CMODEA aims to simultaneously optimize system capacity, energy consumption, and task latency while meeting the computational resource requirements of UAVs and ensuring acceptable user task latency levels. Simulation results demonstrate the algorithm's effectiveness in significantly enhancing capacity, reducing energy consumption and latency, without greatly increasing algorithm complexity.
引用
收藏
页码:36673 / 36687
页数:15
相关论文
共 50 条
[21]   Mobile Edge Computing and Machine Learning in the Internet of Unmanned Aerial Vehicles: A Survey [J].
Ning, Zhaolong ;
Hu, Hao ;
Wang, Xiaojie ;
Guo, Lei ;
Guo, Song ;
Wang, Guoyin ;
Gao, Xinbo .
ACM COMPUTING SURVEYS, 2024, 56 (01)
[22]   Offloading Decision for Mobile Multi-Access Edge Computing in a Multi-Tiered 6G Network [J].
Rodrigues, Tiago Koketsu ;
Liu, Jiajia ;
Kato, Nei .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) :1414-1427
[23]   LVBS: Lightweight Vehicular Blockchain for Secure Data Sharing in Disaster Rescue [J].
Su, Zhou ;
Wang, Yuntao ;
Xu, Qichao ;
Zhang, Ning .
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (01) :19-32
[24]   Secure and Energy-Efficient UAV Relay Communications Exploiting Collaborative Beamforming [J].
Sun, Geng ;
Li, Jiahui ;
Wang, Aimin ;
Wu, Qingqing ;
Sun, Zemin ;
Liu, Yanheng .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (08) :5401-5416
[25]   RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring [J].
Sun, Wei ;
Dai, Liang ;
Zhang, Xiaorui ;
Chang, Pengshuai ;
He, Xiaozheng .
APPLIED INTELLIGENCE, 2022, 52 (08) :8448-8463
[26]   Speech Emotion Recognition Enhanced Traffic Efficiency Solution for Autonomous Vehicles in a 5G-Enabled Space-Air-Ground Integrated Intelligent Transportation System [J].
Tan, Liang ;
Yu, Keping ;
Lin, Long ;
Cheng, Xiaofan ;
Srivastava, Gautam ;
Lin, Jerry Chun-Wei ;
Wei, Wei .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) :2830-2842
[27]   On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds [J].
Wang, Cheng-Xiang ;
You, Xiaohu ;
Gao, Xiqi ;
Zhu, Xiuming ;
Li, Zixin ;
Zhang, Chuan ;
Wang, Haiming ;
Huang, Yongming ;
Chen, Yunfei ;
Haas, Harald ;
Thompson, John S. ;
Larsson, Erik G. ;
Di Renzo, Marco ;
Tong, Wen ;
Zhu, Peiying ;
Shen, Xuemin ;
Poor, H. Vincent ;
Hanzo, Lajos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (02) :905-974
[28]   Channel Parameter Estimation of mmWave MIMO System in Urban Traffic Scene: A Training Channel-Based Method [J].
Wang, Han ;
Xiao, Pingping ;
Li, Xingwang .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (01) :754-762
[29]   UAV-Assisted Data Collection for Internet of Things: A Survey [J].
Wei, Zhiqing ;
Zhu, Mingyue ;
Zhang, Ning ;
Wang, Lin ;
Zou, Yingying ;
Meng, Zeyang ;
Wu, Huici ;
Feng, Zhiyong .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) :15460-15483
[30]   Joint DOD and DOA Estimation for NLOS Target Using IRS-Aided Bistatic MIMO Radar [J].
Wen, Fangqing ;
Shi, Junpeng ;
Gui, Guan ;
Yuen, Chau ;
Sari, Hikmet ;
Adachi, Fumiyuki .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (10) :15798-15802