SOFTWARE FOR LIMITED MEMORY RESTARTED lp - lq MINIMIZATION METHODS USING GENERALIZED KRYLOV SUBSPACES∗

被引:4
作者
Buccini, Alessandro [1 ]
Reichel, Lothar [2 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, I-09124 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2024年 / 61卷
关键词
l(p) - l(q) minimization; inverse problem; regression; iterative method; PARAMETER CHOICE RULES; TIKHONOV REGULARIZATION; CONVERGENCE;
D O I
10.1553/etna_vol61s66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes software for the solution of finite-dimensional minimization problems with two terms, a fidelity term and a regularization term. The sum of the p-norm of the former and the q-norm of the latter is minimized, where 0 < p, q <= 2. We note that the "p-norm" is not a norm when 0 < p < 1, and similarly for the "q-norm". This kind of minimization problems arises when solving linear discrete ill-posed problems, such as certain problems in image restoration. They also find applications in statistics. Recently, limited-memory restarted numerical methods that are well suited for the solution of large-scale minimization problems of this kind were described by the authors in [Adv. Comput. Math., 49 (2023), Art. 26]. These methods are based on the application of restarted generalized Krylov subspaces. This paper presents software for these solution methods.
引用
收藏
页码:66 / 91
页数:26
相关论文
共 35 条
[1]   Restoration of Blurred Images Corrupted by Impulse Noise via Median Filters and lp-lq Minimization [J].
Alotaibi, Majed ;
Buccini, Alessandro ;
Reichel, Lothar .
2021 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ITS APPLICATIONS ICCSA 2021, 2021, :112-122
[2]  
[Anonymous], 2001, Classics in Applied Mathematics
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Modulus-based iterative methods for constrainedlp-lqminimization [J].
Buccini, A. ;
Pasha, M. ;
Reichel, L. .
INVERSE PROBLEMS, 2020, 36 (08)
[5]   A comparison of parameter choice rules for ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document}-ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^q$$\end{document} minimization [J].
Alessandro Buccini ;
Monica Pragliola ;
Lothar Reichel ;
Fiorella Sgallari .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) :441-463
[6]   Limited memory restarted lp-lq minimization methods using generalized Krylov subspaces [J].
Buccini, Alessandro ;
Reichel, Lothar .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
[7]   Variable selection in saturated and supersaturated designs via lp-lq minimization [J].
Buccini, Alessandro ;
De la Cruz Cabrera, Omar ;
Koukouvinos, Christos ;
Mitrouli, Marilena ;
Reichel, Lothar .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4326-4347
[8]   Generalized cross validation for lp-lq minimization [J].
Buccini, Alessandro ;
Reichel, Lothar .
NUMERICAL ALGORITHMS, 2021, 88 (04) :1595-1616
[9]   On the choice of regularization matrix for an l2-lq minimization method for image restoration [J].
Buccini, Alessandro ;
Huang, Guangxin ;
Reichel, Lothar ;
Yin, Feng .
APPLIED NUMERICAL MATHEMATICS, 2021, 164 :211-221
[10]   Large-scale regression with non-convex loss and penalty [J].
Buccini, Alessandro ;
Cabrera, Omar De la Cruz ;
Donatelli, Marco ;
Martinelli, Andrea ;
Reichel, Lothar .
APPLIED NUMERICAL MATHEMATICS, 2020, 157 :590-601