Unification theory of instabilities of visco-diffusive swirling flows

被引:0
作者
Kirillov, Oleg N. [1 ]
Mutabazi, Innocent [2 ]
机构
[1] Northumbria Univ, Newcastle Upon Tyne NE1 8ST, England
[2] Normandie Univ, Univ Le Havre, Lab Ondes & Milieux Complexes, UMR 6294,CNRS, 53 Rue Prony, F-76058 Le Havre, France
来源
PHYSICAL REVIEW FLUIDS | 2024年 / 9卷 / 12期
关键词
CIRCULAR COUETTE-FLOW; SHEAR INSTABILITY; LOCAL INSTABILITIES; LINEAR-STABILITY; HEAT-TRANSFER; CENTRIFUGAL; COMPETITION; CONVECTION; CYLINDERS; ANNULUS;
D O I
10.1103/PhysRevFluids.9.124802
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A universal theory of linear instabilities in swirling flows, occurring in both natural settings and industrial applications, is formulated. The theory encompasses a wide range of open and confined flows, including spiral isothermal flows and baroclinic flows driven by radial temperature gradients and natural gravity in rotating fluids. By employing short-wavelength local analysis, the theory generalizes previous findings from numerical simulations and linear stability analyses of specific swirling flows, such as spiral Couette flow, spiral Poiseuille flow, and baroclinic Couette flow. A general criterion, extending and unifying existing criteria for instability to both centrifugal and shear-driven perturbations in swirling flows is derived, taking into account viscosity and thermal diffusion, and guiding experimental and numerical investigations in the otherwise inaccessible parameter regimes.
引用
收藏
页数:13
相关论文
共 78 条
  • [11] Bifurcations and instabilities in sliding Couette flow
    Deguchi, K.
    Nagata, M.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 678 : 156 - 178
  • [12] Dhanaraj G., 2010, Handbook of Crystal Growth
  • [13] Drazin P.G., 2002, Introduction to Hydrodynamic Stability
  • [14] An hydrodynamic shear instability in stratified disks
    Dubrulle, B
    Marié, L
    Normand, C
    Richard, D
    Hersant, F
    Zahn, JP
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 429 (01) : 1 - 13
  • [15] Linear and non-linear properties of the Goldreich-Schubert-Fricke instability in stellar interiors with arbitrary local radial and latitudinal differential rotation
    Dymott, R. W.
    Barker, A. J.
    Jones, C. A.
    Tobias, S. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (02) : 2857 - 2882
  • [16] LOCAL STABILITY ANALYSIS ALONG LAGRANGIAN PATHS
    ECKHARDT, B
    YAO, D
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (11) : 2073 - 2088
  • [17] A NOTE ON THE INSTABILITY OF COLUMNAR VORTICES
    ECKHOFF, KS
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 145 (AUG) : 417 - 421
  • [18] NOTE ON THE STABILITY OF STEADY INVISCID HELICAL GAS-FLOWS
    ECKHOFF, KS
    STORESLETTEN, L
    [J]. JOURNAL OF FLUID MECHANICS, 1978, 89 (DEC) : 401 - 411
  • [19] A NOTE ON THE STABILITY OF COLUMNAR VORTICES
    EMANUEL, KA
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 145 (AUG) : 235 - 238
  • [20] Emanuel KA., 2018, Meteorol Monogr, DOI [DOI 10.1175/AMSMONOGRAPHS-D-18-0016.1.1, 10.1175/AMSMONOGRAPHS-D-18-0016.1, DOI 10.1175/AMSMONOGRAPHS-D-18-0016.1]