LULC change detection analysis of Chamarajanagar district, Karnataka state, India using CNN-based deep learning method

被引:0
|
作者
Mahendra, H. N. [1 ]
Pushpalatha, V. [2 ]
Mallikarjunaswamy, S. [1 ]
Subramoniam, S. Rama [3 ]
Rao, Arjun Sunil [4 ]
Sharmila, N. [5 ]
机构
[1] Visvesvaraya Technol Univ Belagavi, JSS Acad Tech Educ, Dept Elect & Commun Engn, Bengaluru 560060, Karnataka, India
[2] Visvesvaraya Technol Univ Belagavi, Global Acad Technol, Dept Artificial Intelligence & Data Sci, Bengaluru 560098, Karnataka, India
[3] Indian Space Res Org ISRO, Reg Remote Sensing Ctr South, Bengaluru 560037, Karnataka, India
[4] Manipal Inst Technol, Manipal Acad Higher Educ, Dept Elect & Commun Engn, Manipal 576104, Karnataka, India
[5] JSS Sci & Technol Univ, Dept Elect & Elect Engn, Mysuru 570006, Karnataka, India
关键词
Remote sensing; Deep learning; Geographic information system; Convolutional neural network; Land use land cover; Change detection; COVER CHANGE DETECTION; LAND-COVER; SCENE CLASSIFICATION; NEURAL-NETWORKS; PREDICTION;
D O I
10.1016/j.asr.2024.07.066
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The change detection analysis of land use land cover (LULC) is an important task in several fields and applications such as environmental monitoring, urban planning, disaster management, and climate change studies. This study focuses on the use of remote sensing (RS) and geographic information systems (GIS) to identify the changes in Chamarajanagar district, which is located in Karnataka state, South India. This paper mainly focuses on the classification and change detection analysis of LULC in 2011 and 2021 using linear imaging self-scanning sensor-III (LISS-III) satellite images. Traditional methods for LULC classification involve manual interpretation of satellite images, which provides lower accuracy. Therefore, this paper proposed the Convolutional Neural Network (CNN)-based deep learning classification method for LULC classification. The main objective of the research work is to perform an accurate change detection of the Chamarajanagar district using the classified maps of the years 2011 and 2021. The proposed classification method is outperformed, with a classification accuracy of 95.27 % and 94.57 % for LISS-III satellite imagery of the years 2011 and 2021 respectively. Further, change detection analysis has been carried out using classified maps and results show a decline of 3.23 sq. km, 22.7 sq. km, and 3.83 sq. km in the areas covered by vegetation, agricultural land, and forest area, respectively. In other classes, such as built-up, water bodies, and barren land, an increase in land cover was observed by 5.59 sq. km, 1.99 sq. km, and 20.92 sq. km, respectively. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:6384 / 6408
页数:25
相关论文
共 50 条
  • [31] A multi-layer perceptron-Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India
    Kumar, Vivek
    Agrawal, Sonam
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (05)
  • [32] A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals
    Liu, Pengqian
    Xu, Changhang
    Xie, Jing
    Fu, Mingfu
    Chen, Yifei
    Liu, Zichen
    Zhang, Zhiyuan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 170 : 1161 - 1172
  • [33] Change Detection Method for High Resolution Remote Sensing Images Using Deep Learning
    Zhang X.
    Chen X.
    Li F.
    Yang T.
    Chen, Xiuwan (xwchen@pku.edu.cn), 1600, SinoMaps Press (46): : 999 - 1008
  • [34] Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring
    Song, Ahram
    Lee, Changhui
    Lee, Jinmin
    Han, Youkyung
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 991 - 1005
  • [35] Monitoring of Arc Plasma Process Parameter Using CNN-Based Deep Learning Algorithm to Accommodate Sensor Failure
    Sethi, Shakti Prasad
    Das, Debi Prasad
    Behera, Santosh Kumar
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (06) : 1434 - 1445
  • [36] Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level
    Qing, Yuanzhao
    Ming, Dongping
    Wen, Qi
    Weng, Qihao
    Xu, Lu
    Chen, Yangyang
    Zhang, Yi
    Zeng, Beichen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [37] Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method
    Kemal Hacıefendioğlu
    Hasan Basri Başağa
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 1621 - 1633
  • [38] A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN
    Alshingiti, Zainab
    Alaqel, Rabeah
    Al-Muhtadi, Jalal
    Haq, Qazi Emad Ul
    Saleem, Kashif
    Faheem, Muhammad Hamza
    ELECTRONICS, 2023, 12 (01)
  • [39] Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method
    Haciefendioglu, Kemal
    Basaga, Hasan Basri
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2022, 46 (02) : 1621 - 1633
  • [40] EEG-based epileptic seizure state detection using deep learning
    Patel, Vibha
    Bhatti, Dharmendra
    Ganatra, Amit
    Tailor, Jaishree
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (01) : 57 - 66