DeepSL: Deep Neural Network-based Similarity Learning

被引:0
作者
Tourad, Mohamedou Cheikh [1 ]
Abdelmounaim, Abdali [2 ]
Dhleima, Mohamed [1 ]
Telmoud, Cheikh Abdelkader Ahmed [1 ]
Lachgar, Mohamed [3 ]
机构
[1] Univ Nouakchott, CSIDS, FST, Nouakchott, Mauritania
[2] Cadi Ayyad Univ, FSTG, CISIEV, Marrakech, Morocco
[3] Chouaib Doukkali Univ, ENSA, LTI, El Jadida, Morocco
关键词
Similarity learning; Siamese networks; MCESTA; triplet loss; similarity metrics;
D O I
10.14569/IJACSA.2024.01503136
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The quest for a top-rated similarity metric is inherently mission-specific, with no universally "great" metric relevant across all domain names. Notably, the efficacy of a similarity metric is regularly contingent on the character of the challenge and the characteristics of the records at hand. This paper introduces an innovative mathematical model called MCESTA, a versatile and effective technique designed to enhance similarity learning via the combination of multiple similarity functions. Each characteristic within it is assigned a selected weight, tailor-made to the necessities of the given project and data type. This adaptive weighting mechanism enables it to outperform conventional methods by providing an extra nuanced approach to measuring similarity. The technique demonstrates significant enhancements in numerous machine learning tasks, highlighting the adaptability and effectiveness of our model in diverse applications.
引用
收藏
页码:1394 / 1401
页数:8
相关论文
共 20 条
[1]  
Bishop CM., 2006, Pattern Recognition and Machine Learning
[2]   Deep similarity learning for multimodal medical images [J].
Cheng, Xi ;
Zhang, Li ;
Zheng, Yefeng .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) :248-252
[3]  
Chicco D, 2021, METHODS MOL BIOL, V2190, P73, DOI 10.1007/978-1-0716-0826-5_3
[4]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[5]  
Deng CH, 2020, Arxiv, DOI arXiv:1910.02370
[6]   Triplet Loss in Siamese Network for Object Tracking [J].
Dong, Xingping ;
Shen, Jianbing .
COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 :472-488
[7]  
Koch G, 2015, ICML DEEP LEARN WORK
[8]   Metric Learning: A Survey [J].
Kulis, Brian .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 5 (04) :287-364
[9]   Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging [J].
Li, Matthew D. ;
Chang, Ken ;
Bearce, Ben ;
Chang, Connie Y. ;
Huang, Ambrose J. ;
Campbell, J. Peter ;
Brown, James M. ;
Singh, Praveer ;
Hoebel, Katharina, V ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Palmer, William E. ;
Chiang, Michael F. ;
Kalpathy-Cramer, Jayashree .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]   Deep Learning for Generic Object Detection: A Survey [J].
Liu, Li ;
Ouyang, Wanli ;
Wang, Xiaogang ;
Fieguth, Paul ;
Chen, Jie ;
Liu, Xinwang ;
Pietikainen, Matti .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) :261-318