Harnessing enhanced lithium-ion storage in self-assembled organic nanowires for batteries and metal-ion supercapacitors

被引:1
|
作者
Obraztsov, Ievgen [1 ]
Langer, Rostislav [2 ]
Ruthes, Jean G. A. [4 ,5 ]
Presser, Volker [4 ,5 ,6 ]
Otyepka, Michal [1 ,2 ]
Zboril, Radek [1 ,3 ]
Bakandritsos, Aristides [1 ,3 ]
机构
[1] Palacky Univ Olomouc, Czech Adv Technol & Res Inst CATRIN, Reg Ctr Adv Technol & Mat RCPTM, Slechtitelu 27, Olomouc 77900, Czech Republic
[2] VSB Tech Univ Ostrava, IT4Innovat, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[3] VSB Tech Univ Ostrava, Nanotechnol Ctr, Ctr Energy & Environm Technol, 17 Listopadu 2172-15, Ostrava 70800, Czech Republic
[4] INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany
[5] Saarland Univ, Dept Mat Sci & Engn, Campus D2 2, D-66123 Saarbrucken, Germany
[6] Saarene Saarland Ctr Energy Mat & Sustainabil, Campus C4 2, D-66123 Saarbrucken, Germany
关键词
DOPED POLYANILINE; ELECTRODE; ANODE;
D O I
10.1039/d4ee02777a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic materials have emerged as highly efficient electrodes for electrochemical energy storage, offering sustainable solutions independent from non-renewable resources. In this study, we showcase that mesoscale engineering can dramatically transform the electrochemical features of a molecular organic carboxylic anode. Through a sustainable, energy-efficient and environmentally benign self-assembly strategy, we developed a network of organic nanowires formed during water evaporation directly on the copper current collector, circumventing the need for harmful solvents, typically employed in such processes. The organic nanowire anode delivers high capacity and rate, reaching 1888 mA h g-1 at 0.1 A g-1 and maintaining 508 mA h g-1 at a specific current of 10 A g-1. Moreover, it exhibits superior thermal management during lithiation in comparison to graphite and other organic anodes. Comprehensive electrochemical evaluations and theoretical calculations reveal rapid charge transport mechanisms, with lithium diffusivity rates reaching 5 x 10-9 cm2 s-1, facilitating efficient and rapid interactions with 24 lithium atoms per molecule. Integrated as the negative electrode in a lithium-ion capacitor, paired with a commercially available porous carbon, the cell delivers a specific energy of 156 W h kg-1 at a specific power of 0.34 kW kg-1 and 60.2 W h kg-1 at 19.4 kW kg-1, establishing a benchmark among state-of-the-art systems in the field. These results underscore the critical role of supramolecular organization for optimizing the performance of organic electrode materials for practical and sustainable energy storage technologies. Mesoscale engineering of small organic molecules towards a 3D nanowire network offers a potent toolkit for improved energy storage performance.
引用
收藏
页码:8874 / 8884
页数:11
相关论文
共 50 条
  • [21] Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries
    Sun, Yongming
    Hu, Xianluo
    Luo, Wei
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) : 13826 - 13831
  • [22] Metal hydrides for lithium-ion batteries
    Y. Oumellal
    A. Rougier
    G. A. Nazri
    J-M. Tarascon
    L. Aymard
    Nature Materials, 2008, 7 : 916 - 921
  • [23] Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries
    Zhou, Xiaosi
    Yin, Ya-Xia
    Wan, Li-Jun
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2012, 2 (09) : 1086 - 1090
  • [24] Self-assembled carbon-silicon carbonitride nanocomposites: highperformance anode materials for lithium-ion batteries
    Chen, Yong
    Li, Cheng
    Wang, Yiguang
    Zhang, Qing
    Xu, Chengying
    Wei, Bingqing
    An, Linan
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (45) : 18186 - 18190
  • [25] A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries
    Yoshimoto, Nobuko
    Shimamura, Osamu
    Nishimura, Takuya
    Egashira, Minato
    Nishioka, Maiko
    Morita, Masayuki
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) : 481 - 483
  • [26] Metal hydrides for lithium-ion batteries
    Oumellal, Y.
    Rougier, A.
    Nazri, G. A.
    Tarascon, J-M.
    Aymard, L.
    NATURE MATERIALS, 2008, 7 (11) : 916 - 921
  • [27] High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes
    Cassagneau, T
    Fendler, JH
    ADVANCED MATERIALS, 1998, 10 (11) : 877 - +
  • [28] Self-Assembled Three-Dimensional Graphene Aerogel with an Interconnected Porous Structure for Lithium-Ion Batteries
    Huang, Liang-ai
    He, Zhishun
    Guo, Jianfeng
    Pei, Shi-en
    Shao, Haibo
    Wang, Jianming
    CHEMELECTROCHEM, 2019, 6 (10): : 2698 - 2706
  • [29] Pseudo single lithium-ion conductors enabled by a metal-organic framework with biomimetic lithium-ion chains for lithium metal batteries
    Shen, Jian-Qiang
    Song, Ying-Li
    He, Chun-Ting
    Zhang, Chen
    Lu, Xing
    Qi, Zhikai
    Lu, Yunfeng
    Zhang, Xian-Ming
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (12) : 2436 - 2442
  • [30] Calorimetric Efficiency Measurements of Supercapacitors and Lithium-Ion Batteries
    Virtanen, Antti
    Haapala, Hannu
    Hannikainen, Saara
    Muhonen, Tuomas
    Tuusa, Heikki
    2011 TWENTY-SIXTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 2011, : 1367 - 1373