WENDY: Covariance dynamics based gene regulatory network inference

被引:0
|
作者
Wang, Yue [1 ,2 ]
Zheng, Peng [3 ,4 ]
Cheng, Yu-Chen [5 ,6 ,7 ,8 ]
Wang, Zikun [9 ]
Aravkin, Aleksandr [10 ]
机构
[1] Columbia Univ, Irving Inst Canc Dynam, New York, NY 10027 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Inst Hlth Metr & Evaluat, Seattle, WA 98195 USA
[4] Univ Washington, Dept Hlth Metr Sci, Seattle, WA 98195 USA
[5] Dana Farber Canc Inst, Dept Data Sci, Boston, MA 02215 USA
[6] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[7] Dana Farber Canc Inst, Ctr Canc Evolut, Boston, MA 02215 USA
[8] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[9] Rockefeller Univ, Lab Genet, New York, NY 10065 USA
[10] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
Gene regulatory network; Inference; Mathematical modeling; GRANGER CAUSALITY; EXPRESSION DATA; AUTOREGULATION; SYSTEMS;
D O I
10.1016/j.mbs.2024.109284
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. Fora widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms
    Daniel Morgan
    Matthew Studham
    Andreas Tjärnberg
    Holger Weishaupt
    Fredrik J. Swartling
    Torbjörn E. M. Nordling
    Erik L. L. Sonnhammer
    Scientific Reports, 10
  • [32] Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms
    Morgan, Daniel
    Studham, Matthew
    Tjarnberg, Andreas
    Weishaupt, Holger
    Swartling, Fredrik J.
    Nordling, Torbjorn E. M.
    Sonnhammer, Erik L. L.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [33] Deep Learning in Gene Regulatory Network Inference: A Survey
    Dong, Jiayi
    Li, Jiahao
    Wang, Fei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 2089 - 2101
  • [34] Investigation of coevolutionary approach in gene regulatory network inference
    Komlen, Danko
    Jakobovic, Domagoj
    2013 36TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2013, : 981 - 987
  • [35] The inference method of the gene regulatory network with a majority rule
    Kizaki, Naoyuki
    Yoshino, Hiroshi
    Kurokawa, Hiroaki
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2015, 6 (02): : 226 - 236
  • [36] Gene regulatory network inference resources: A practical overview
    Mercatelli, Daniele
    Scalambra, Laura
    Triboli, Luca
    Ray, Forest
    Giorgi, Federico M.
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2020, 1863 (06):
  • [37] Elimination of indirect regulatory interactions in gene network inference
    Muddana, Hari Shankar
    Guntupalli, Jyothi Swaroop
    Polapragada, Chaitanya
    2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 79 - +
  • [38] Gene Regulatory Network Inference as Relaxed Graph Matching
    Weighill, Deborah
    Ben Guebila, Marouen
    Lopes-Ramos, Camila
    Glass, Kimberly
    Quackenbush, John
    Platig, John
    Burkholz, Rebekka
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10263 - 10272
  • [39] Integrative random forest for gene regulatory network inference
    Petralia, Francesca
    Wang, Pei
    Yang, Jialiang
    Tu, Zhidong
    BIOINFORMATICS, 2015, 31 (12) : 197 - 205
  • [40] NSRGRN: a network structure refinement method for gene regulatory network inference
    Liu, Wei
    Yang, Yu
    Lu, Xu
    Fu, Xiangzheng
    Sun, Ruiqing
    Yang, Li
    Peng, Li
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)