Optimizing Resource Scheduling for Multi-Scenario Mixed Service Groups under Edge Cloud-Native Environments Using Simulation Learning

被引:0
作者
Xiong, Wei [1 ]
Wang, Xinying [1 ]
Wotawa, Franz [2 ]
Hua, Qiaozhi [1 ]
机构
[1] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang, Peoples R China
[2] Graz Univ Technol, Inst Software Technol, Graz, Austria
来源
JOURNAL OF INTERNET TECHNOLOGY | 2024年 / 25卷 / 07期
关键词
Edge cloud-native; Resource scheduling; Imitation learning;
D O I
10.70003/160792642024122507011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The evolution of cloud and edge computing technologies has brought about resource management challenges. Traditional resource scheduling strategies fall short in dynamic cloud-edge environments, one of the challenges is identifying system state changes in multi-scenario edge cloud-native environments. The dynamic orchestration and deployment of container resources are crucial. To address this issue, we introduce a virtual environment, which generates interactions of multi-scenario mixed service groups. Furthermore, we proposed a multi-agent adversarial imitation learning approach, which is trained in the virtual environment. Experiments reveal that our approach, which is fully trained in the virtual mixed-service environment, results traditional supervised approaches.
引用
收藏
页码:1071 / 1081
页数:11
相关论文
共 38 条
[1]   Edge-Native Intelligence for 6G Communications Driven by Federated Learning: A Survey of Trends and Challenges [J].
Al-Quraan, Mohammad ;
Mohjazi, Lina ;
Bariah, Lina ;
Centeno, Anthony ;
Zoha, Ahmed ;
Arshad, Kamran ;
Assaleh, Khaled ;
Muhaidat, Sami ;
Debbah, Merouane ;
Ali Imran, Muhammad .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03) :957-979
[2]   A survey of robot learning from demonstration [J].
Argall, Brenna D. ;
Chernova, Sonia ;
Veloso, Manuela ;
Browning, Brett .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) :469-483
[3]   AI-Based Resource Management in Beyond 5G Cloud Native Environment [J].
Boudi, Abderrahmane ;
Bagaa, Miloud ;
Poyhonen, Petteri ;
Taleb, Tarik ;
Flinck, Hannu .
IEEE NETWORK, 2021, 35 (02) :128-135
[4]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[5]   BlastFunction: A Full-stack Framework Bringing FPGA Hardware Acceleration to Cloud-native Applications [J].
Damiani, Andrea ;
Fiscaletti, Giorgia ;
Bacis, Marco ;
Brondolin, Rolando ;
Santambrogio, Marco D. .
ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2022, 15 (02)
[6]  
Deng H., 2022, International Journal of Performability Engineering, V18, P317
[7]  
Goecks V. G., 2020, P INT C AUT AG MULTI, P465
[8]   QoE-driven Task Offloading with Deep Reinforcement Learning in Edge intelligent IoV [J].
He, Xiaoming ;
Lu, Haodong ;
Mao, Yingchi ;
Wang, Kun .
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
[9]   DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network [J].
Hu, Zhanli ;
Xue, Hengzhi ;
Zhang, Qiyang ;
Gao, Juan ;
Zhang, Na ;
Zou, Sijuan ;
Teng, Yueyang ;
Liu, Xin ;
Yang, Yongfeng ;
Liang, Dong ;
Zhu, Xiaohua ;
Zheng, Hairong .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) :35-43
[10]  
Janner M, 2021, Arxiv, DOI arXiv:1906.08253