Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis

被引:0
|
作者
Yang, Willers [1 ]
Rall, Patrick [1 ]
机构
[1] MIT IBM Watson AI Lab, IBM Quantum, Cambridge, MA 02142 USA
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
关键词
Logic gates; Qubit; Computer architecture; Integrated circuit modeling; Codes; Rotation measurement; Quantum entanglement; Clifford circuits; Greenberger-Horne-Zeilinger (GHZ) states; long-range entanglement; quantum circuit synthesis;
D O I
10.1109/TQE.2024.3402085
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger-Horne-Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an "entanglement bus," unlocking global operation primitives such as multiqubit Pauli rotations and fan-out gates. We derive bounds on the circuit size for several well-studied problems, such as CZ circuit, CX circuit, and Clifford circuit synthesis. In particular, in an architecture using one such entanglement bus, we give a synthesis scheme for arbitrary Clifford operations requiring at most 2n+1 layers of entangled state injections, which can be computed classically in O(n(3)) time. In a square-lattice architecture with two entanglement buses, we show that a graph state can be synthesized using at most [1/2n]+1 layers of GHZ state injections, and Clifford operations require only [3/2n]+ O(root n) layers of GHZ state injections.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Transport and entanglement growth in long-range random Clifford circuits
    Richter, Jonas
    Lunt, Oliver
    Pal, Arijeet
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [2] Correlations, long-range entanglement, and dynamics in long-range Kitaev chains
    Francica, Gianluca
    Dell'Anna, Luca
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [3] Long-range entanglement in the Dirac vacuum
    Silman, J.
    Reznik, B.
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [4] Long-range entanglement and topological excitations
    Torre, Gianpaolo
    Odavic, Jovan
    Fromholz, Pierre
    Giampaolo, Salvatore Marco
    Franchini, Fabio
    SCIPOST PHYSICS CORE, 2024, 7 (03):
  • [5] Entanglement entropy in the long-range Kitaev chain
    Ares, Filiberto
    Esteve, Jose G.
    Falceto, Fernando
    de Queiroz, Amilcar R.
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [6] Entanglement, fractional magnetization, and long-range interactions
    Cadarso, Andrea
    Sanz, Mikel
    Wolf, Michael M.
    Cirac, J. Ignacio
    Perez-Garcia, David
    PHYSICAL REVIEW B, 2013, 87 (03):
  • [7] Entanglement entropy in long-range harmonic oscillators
    Nezhadhaghighi, M. Ghasemi
    Rajabpour, M. A.
    EPL, 2012, 100 (06)
  • [8] Nonzero Momentum Requires Long-Range Entanglement
    Gioia, Lei
    Wang, Chong
    PHYSICAL REVIEW X, 2022, 12 (03):
  • [9] Entanglement distribution and total entanglement in a fermion model with long-range interaction
    Xiong, Long
    Huang, Yue-Xing
    Wu, Yu-Chun
    Zhang, Yong-Sheng
    Guo, Guang-Can
    Gong, Ming
    PHYSICAL REVIEW B, 2023, 107 (23)
  • [10] Matrix product states with long-range localizable entanglement
    Wahl, T. B.
    Perez-Garcia, D.
    Cirac, J. I.
    PHYSICAL REVIEW A, 2012, 86 (06):