Single-photon measurement-device-independent quantum secure direct communication

被引:1
作者
Sun, Ze-Zhou [1 ,2 ,3 ]
Cheng, Yuan-Bin [1 ,2 ,3 ]
Ruan, Dong [2 ,3 ,4 ]
Pan, Dong [1 ]
机构
[1] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum communication; Quantum secure direct communication; Measurement-device-independent; Single-photon source; KEY DISTRIBUTION; DECOY-STATE;
D O I
10.1016/j.optcom.2024.130745
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Measurement-device-independent quantum secure direct communication (MDI-QSDC) protocol can prevent the divulgence of information caused by detector vulnerabilities. Existing MDI-QSDC protocol requires the utilization of entanglement sources which hinders the practical application of the protocol. In this paper, we propose a single-photon MDI-QSDC (SP-MDI-QSDC) protocol, which can realize secure communication using single-photon sources, thereby dispensing the entanglement preparation. In this SP-MDI-QSDC, quantum memory is used, and weak coherent pulses are used as the single-photon source. We conducted an analysis model for quantum memory and communication performance together with decoy-state techniques. The simulation results using actual experimental parameters show that our protocol has compelling communication performance, and the maximum secure communication distance can be further prolonged considerably by incorporating the technique of increasing capacity using masking (INCUM).
引用
收藏
页数:8
相关论文
共 49 条
[1]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution [J].
Cao, Yuan ;
Li, Yu-Huai ;
Yang, Kui-Xing ;
Jiang, Yang-Fan ;
Li, Shuang-Lin ;
Hu, Xiao-Long ;
Abulizi, Maimaiti ;
Li, Cheng-Long ;
Zhang, Weijun ;
Sun, Qi-Chao ;
Liu, Wei-Yue ;
Jiang, Xiao ;
Liao, Sheng-Kai ;
Ren, Ji-Gang ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Yin, Juan ;
Lu, Chao-Yang ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 125 (26)
[4]   Optimizing Decoy-State Protocols for Practical Quantum Key Distribution Systems [J].
Fan-Yuan, Guan-Jie ;
Wang, Ze-Hao ;
Wang, Shuang ;
Yin, Zhen-Qiang ;
Chen, Wei ;
He, De-Yong ;
Guo, Guang-Can ;
Han, Zheng-Fu .
ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (04)
[5]   Long-distance measurement-device-independent quantum secure direct communication [J].
Gao, Zikai ;
Li, Tao ;
Li, Zhenhua .
EPL, 2019, 125 (04)
[6]   Proof-of-principle demonstration of semi-quantum key distribution based on the Mirror protocol [J].
Han, Siyu ;
Huang, Yutao ;
Mi, Shang ;
Qin, Xiaojuan ;
Wang, Jindong ;
Yu, Yafei ;
Wei, Zhengjun ;
Zhang, Zhiming .
EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)
[7]   Measurement-device-independent three-party quantum secure direct communication [J].
Hong, Yi-Piao ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
[8]   Implementation vulnerabilities in general quantum cryptography [J].
Huang, Anqi ;
Barz, Stefanie ;
Andersson, Erika ;
Makarov, Vadim .
NEW JOURNAL OF PHYSICS, 2018, 20
[9]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014
[10]   Employing Single Photons for Measurement-Device-Independent Quantum Secure Direct Communication With Identity Authentication [J].
Li, Guo-Dong ;
Liu, Jia-Cheng ;
Wang, Qing-Le ;
Sun, Wen-Qi .
IEEE COMMUNICATIONS LETTERS, 2024, 28 (03) :473-477