Lightweight and hydrophobic silica aerogel/glass fiber composites with hierarchical networks for outstanding thermal and acoustic insulation

被引:2
|
作者
Xiao, Qiyue [1 ]
Xue, Jieyu [1 ]
Meng, Yuanlong [1 ]
Ding, Yuanrong [1 ]
Yang, Yong [1 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215000, Peoples R China
关键词
Silica aerogel; Glass fibers; Sound insulation; Thermal insulation; Contact angle; AMBIENT-PRESSURE; SOUND-ABSORPTION; AIR PERMEABILITY; ARAMID FIBERS; PERFORMANCE; STABILITY; XEROGELS;
D O I
10.1016/j.ceramint.2024.10.303
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silica aerogels are regarded as potential thermal and acoustic insulation materials with low density and porous structure. However, the hydrophilicity due to surface hydroxyl groups and the low mechanical intensity have limited its further application. Generally, it can be achieved by adjusting the process parameters of the sol-gel to refine the structure of silica aerogels and optimize performance. In this study, we adopted an appropriate modification strategy of incorporating glass fiber felts as the reinforcing phase and trimethylchlorosilane (TMCS) as the hydrophobic modifier. By adjusting the solvent exchange time, the micro-nano structure, i.e. hierarchical networks, was optimized. The TMCS-modified silica aerogel/glass fiber/hot-melt fiber composites (TSGMs) exhibited great sound insulation, and the maximum sound transmission loss (STL) was up to 34 dB at 6300 Hz. Compared to unmodified, STL improved by 8 dB in simulated practical applications. In addition, TSGMs also exhibited high hydrophobicity with a water contact angle of 147 degrees and excellent thermal insulation with a thermal conductivity of 0.0345 W (m k)- 1. The results could contribute to the refinement in the preparation process of silica aerogel composites and use in the fields of thermal and acoustic insulation.
引用
收藏
页码:54473 / 54481
页数:9
相关论文
共 50 条
  • [31] Surface modification of miscanthus fiber with hydrophobic silica aerogel for high performance bio-lightweight concrete
    Chen, Y. X.
    Yu, Qingliang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [32] Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation
    Yang, Jianming
    Wu, Huijun
    Huang, Gongsheng
    Liang, Yuying
    Liao, Yundan
    MATERIALS & DESIGN, 2017, 133 : 224 - 236
  • [33] Mechanical, thermal, and hydrophobic properties of silica aerogel-epoxy composites
    Maghsoudi, Khosrow
    Motahari, Siamak
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (03)
  • [34] Enhanced interface and thermal insulation in cement composites using polydopamine-modified hydrophobic silica aerogels
    Tang, Jinzhu
    Ju, Guangxu
    Zheng, Tingyun
    Liang, Rui
    Sun, Guoxing
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (09) : 1376 - 1389
  • [35] Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation
    Li, Zhi
    Shen, Kai
    Hu, Min
    Shulga, Yury M.
    Chen, Zhenkui
    Liu, Qiong
    Li, Ming
    Wu, Xiaoxu
    GELS, 2023, 9 (09)
  • [36] Preparation of flexible fiber-reinforced aerogel composites for thermal insulation
    Feng Junzong
    Feng Jian
    Wang Xiaodong
    Gao Qingfu
    Wu Wei
    RARE METAL MATERIALS AND ENGINEERING, 2008, 37 : 170 - 173
  • [37] A layered aerogel composite with silica fibers, SiC nanowires, and silica aerogels ternary networks for thermal insulation at high-temperature
    Wu, Qiong
    Yang, Mengmeng
    Chen, Zhaofeng
    Lu, Le
    Ma, Zhudan
    Ding, Yang
    Yin, Longpan
    Liu, Tianlong
    Li, Manna
    Yang, Lixia
    Hou, Bin
    Zhu, Huanjun
    Cui, Sheng
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 204 : 71 - 80
  • [38] Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere
    Liu, Chunyuan
    Kim, Jin Seuk
    Kwon, Younghwan
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (02) : 1703 - 1707
  • [39] Lightweight and robust electrospun zirconia fiber reinforced carbon aerogel composites for efficient microwave absorption and heat insulation
    Yang, Dongdong
    Dong, Shun
    Cui, Tangyin
    Xin, Jianqiang
    Xie, Yongshuai
    Chen, Guiqing
    Hong, Changqing
    Zhang, Xinghong
    CARBON, 2024, 228
  • [40] Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel
    Shafi, Sameera
    Navik, Rahul
    Ding, Xiao
    Zhao, Yaping
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 503 : 78 - 83