共 47 条
- [1] Li T., Sahu A.K., Talwalkar A., Smith V., Federated learning: Challenges, methods, and future directions, IEEE Signal Process. Mag., 37, 3, pp. 50-60, (2020)
- [2] Konec ny J., Brendan McMahan H., Yu F.X., Richtarik P., Theertha Suresh A., Bacon D., Federated learning: Strategies for improving communication efficiency, (2016)
- [3] Azimi-Abarghouyi S.M., Fodor V., Scalable hierarchical over-the-air federated learning, IEEE Trans. Wireless Commun., 23, 8, pp. 8480-8496, (2024)
- [4] McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A.Y., Communication-efficient learning of deep networks from decentralized data, Proc. Artif. Intell. Statist., pp. 1273-1282, (2017)
- [5] Tak A., Cherkaoui S., Federated edge learning: Design issues and challenges, IEEE Netw, 35, 2, pp. 252-258, (2021)
- [6] Zhu G., Wang Y., Huang K., Broadband analog aggregation for low-latency federated edge learning, IEEE Trans. Wireless Commun., 19, 1, pp. 491-506, (2019)
- [7] Perez-Neira A., Martinez-Gost M., Sahin A., Razavikia S., Fischione C., Huang K., Waveforms for computing over the air
- [8] Goldenbaum M., Boche H., Stanczak S., Nomographic functions: Efficient computation in clustered Gaussian sensor networks, IEEE Trans. Wireless Commun., 14, 4, pp. 2093-2105, (2015)
- [9] Hellstrom H., Et al., Wireless for machine learning: A survey, Found. Trends Signal Process., 15, 4, pp. 290-399, (2022)
- [10] Yang K., Jiang T., Shi Y., Ding Z., Federated learning via over-the-air computation, IEEE Trans. Wireless Commun., 19, 3, pp. 2022-2035, (2020)