Compensating the Measurement Error in Model-Free Predictive Control of Induction Motor via Kalman Filter-Based Ultra-Local Model

被引:5
作者
Davari, S. Alireza [1 ]
Azadi, Shirin [2 ]
Flores-Bahamonde, Freddy [2 ]
Wang, Fengxinag [3 ]
Wheeler, Patrick [4 ]
Rodriguez, Jose [5 ]
机构
[1] Shahid Rajaee Teacher Training Univ, Dept Elect Engn, Tehran 16788, Iran
[2] Univ Andres Bello, Fac Engn, Santiago 8370146, Chile
[3] Chinese Acad Sci, Quanzhou Inst Equipment Mfg, Haixi Inst, Jinjiang 362200, Peoples R China
[4] Univ Nottingham, Sch Elect & Elect Engn, Nottingham NG7 2RD, England
[5] Univ San Sebastian, Fac Engn, Santiago 7550196, Chile
关键词
Predictive models; Observers; Kalman filters; Stators; Predictive control; Mathematical models; Measurement uncertainty; Kalman filter (KF); model-free predictive control; robust predictive control; TORQUE CONTROL; FLUX CONTROL; SPEED; MACHINE; OBSERVER; DRIVES;
D O I
10.1109/TPEL.2024.3443134
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In model predictive control, ensuring the accuracy and robustness of the prediction model is crucial. A Kalman filter (KF) is a self-correction method commonly used as an observer for state estimation in uncertain applications. Model-free predictive control utilizes an ultra-local model for prediction purposes. Precise measurements and feedback gains are required for accuracy. This study proposes a new ultra-local prediction model based on the KF, replacing the extended state observer (ESO) with the proposed model for disturbance observation. The KF-based prediction model is applied to the model-free predictive control of the induction motor (IM). The method is validated with experimental results, comparing it to the ESO-based prediction model, using a 4 kW IM setup.
引用
收藏
页码:15811 / 15821
页数:11
相关论文
共 38 条
[1]   Predictive Flux Control for Induction Motor Drives With Modified Disturbance Observer for Improved Transient Response [J].
Abbasi, Muhammad Abbas ;
Husain, Abdul Rashid ;
Idris, Nik Rumzi Nik ;
Anjum, Waqas ;
Bassi, Hussain ;
Rawa, Muhyaddin Jamal Hosin .
IEEE ACCESS, 2020, 8 :112484-112495
[2]   A Modified Closed-Loop Voltage Model Observer Based on Adaptive Direct Flux Magnitude Estimation in Sensorless Predictive Direct Voltage Control of an Induction Motor [J].
Aliaskari, Armaghan ;
Zarei, Bahareh ;
Davari, S. Alireza ;
Wang, Fengxiang ;
Kennel, Ralph M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (01) :630-639
[3]  
Azadi S, 2019, 2019 10TH INTERNATIONAL POWER ELECTRONICS, DRIVE SYSTEMS AND TECHNOLOGIES CONFERENCE (PEDSTC), P108, DOI [10.1109/pedstc.2019.8697250, 10.1109/PEDSTC.2019.8697250]
[4]   Speed-sensorless estimation for induction motors using extended Kalman filters [J].
Barut, Murat ;
Bogosyan, Seta ;
Gokasan, Metin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (01) :272-280
[5]   Data-Driven Recursive Least Squares Estimation for Model Predictive Current Control of Permanent Magnet Synchronous Motors [J].
Brosch, Anian ;
Hanke, Soren ;
Wallscheid, Oliver ;
Bocker, Joachim .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (02) :2179-2190
[6]   Enhanced Model Predictive Direct Torque Control Applied to IPM Motor With Online Parameter Adaptation [J].
Cheng, Lon-Jay ;
Tsai, Mi-Ching .
IEEE ACCESS, 2020, 8 :42185-42199
[7]  
Dai Y., 2020, P IEEE 1 CHIN INT YO, P1
[8]   Robust Deadbeat Control of an Induction Motor by Stable MRAS Speed and Stator Estimation [J].
Davari, S. Alireza ;
Wang, Fengxiang ;
Kennel, Ralph M. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (01) :200-209
[9]   Using Full Order and Reduced Order Observers for Robust Sensorless Predictive Torque Control of Induction Motors [J].
Davari, S. Alireza ;
Khaburi, Davood Arab ;
Wang, Fengxiang ;
Kennel, Ralph M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012, 27 (07) :3424-3433
[10]   On Autocovariance Least-Squares Method for Noise Covariance Matrices Estimation [J].
Dunik, Jindrich ;
Straka, Ondrej ;
Simandl, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) :967-972