Photobase-catalyzed thiol-ene click chemistry for light-based additive manufacturing

被引:0
|
作者
Vazquez, J. Antonio [1 ]
de Pariza, Xabier Lopez [2 ,3 ]
Ballinger, Nathan [1 ]
Sadaba, Naroa [1 ]
Sun, Aileen Y. [4 ,5 ]
Olanrewaju, Ayokunle O. [4 ,5 ]
Sardon, Haritz [2 ,3 ]
Nelson, Alshakim [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[2] Univ Basque Country UPV EHU, POLYMAT, Donostia San Sebastian 20018, Spain
[3] Univ Basque Country UPV EHU, Fac Chem, Dept Polymers & Adv Mat Phys Chem & Technol, Donostia San Sebastian 20018, Spain
[4] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[5] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SIMULTANEOUS CHAIN EXTENSION; MICHAEL ADDITION; CROSS-LINKING; NETWORK FORMATION; PHOTOPOLYMERIZATION; TOOL;
D O I
10.1039/d4py01120a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Photo-mediated additive manufacturing from liquid resins (vat photopolymerization) is a rapidly growing field that will enable a new generation of electronic devices, sensors, and soft robotics. Radical-based polymerization remains the standard for photo-curing resins during the printing process due to its fast polymerization kinetics and the range of available photoinitiators. Comparatively, there are fewer examples of non-radical chemical reactions for vat photopolymerization, despite the potential for expanding the range of functional materials and devices. Herein, we demonstrate ionic liquid resins for vat photopolymerization that utilize photo-base generators (PBGs) to catalyze thiol-Michael additions as the network forming reaction. The ionic liquid increased the rate of curing, while also introducing ionic conductivity to the printed structures. Among the PBGs explored, 2-(2-nitrophenyl)-propyloxycarbonyl tetramethylguanidine (NPPOC-TMG) was the most effective for the vat photopolymerization process wherein 250 mu m features were successfully printed. Lastly, we compared the mechanical properties of the PBG catalyzed thiol-Michael network versus the radical polymerized network. Interestingly, the thiol-Michael network had an overall improvement in ductility compared to the radical initiated resin, since step-growth methodologies afford more defined networks than chain growth. These ionic liquid resins for thiol-Michael additions expand the chemistries available for vat photopolymerization and present opportunities for fabricating devices such as sensors.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [1] Thiol-Ene Click Chemistry
    Xu Yuanhong
    Xiong Xingquan
    Cai Lei
    Tang Zhongke
    Ye Zhangji
    PROGRESS IN CHEMISTRY, 2012, 24 (2-3) : 385 - 394
  • [2] Thiol-Ene Click Chemistry
    Hoyle, Charles E.
    Bowman, Christopher N.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (09) : 1540 - 1573
  • [3] Functional Graphene by Thiol-ene Click Chemistry
    Nguyen Dang Luong
    Le Hoang Sinh
    Johansson, Leena-Sisko
    Campell, Joseph
    Seppala, Jukka
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (08) : 3183 - 3186
  • [4] Progress in Thiol-Ene/Yne Click Chemistry
    Liu, Qing
    Zhang, Qiuyu
    Chen, Shaojie
    Zhou, Jian
    Lei, Xingfeng
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2012, 32 (10) : 1846 - 1863
  • [5] Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry
    Wang, Xifan
    Schmidt, Franziska
    Hanaor, Dorian
    Kamm, Paul H.
    Li, Shuang
    Gurlo, Aleksander
    ADDITIVE MANUFACTURING, 2019, 27 : 80 - 90
  • [6] Evaluation of thiol-ene click chemistry in functionalized polysiloxanes
    Cole, Megan A.
    Bowman, Christopher N.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (08) : 1749 - 1757
  • [7] Influence of Type of Initiation on Thiol-Ene "Click" Chemistry
    Uygun, Mustafa
    Tasdelen, Mehmet Atilla
    Yagci, Yusuf
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2010, 211 (01) : 103 - 110
  • [8] Exceptional Light Sensitivity by Thiol-Ene Click Lithography
    Wang, Qianqian
    Cui, Hao
    Wang, Xiaolin
    Hu, Ziyu
    Tao, Peipei
    Li, Mingyang
    Wang, Jianlong
    Tang, Yaping
    Xu, Hong
    He, Xiangming
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (05) : 3064 - 3074
  • [9] Biofunctional Silicon Nanoparticles by Means of Thiol-Ene Click Chemistry
    Ruizendaal, Loes
    Pujari, Sidharam P.
    Gevaerts, Veronique
    Paulusse, Jos M. J.
    Zuilhof, Han
    CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (10) : 2776 - 2786
  • [10] Facile polyisobutylene functionalization via thiol-ene click chemistry
    Magenau, Andrew J. D.
    Chan, Justin W.
    Hoyle, Charles E.
    Storey, Robson F.
    POLYMER CHEMISTRY, 2010, 1 (06) : 831 - 833