Using Semi-Supervised Domain Adaptation to Enhance EEG-Based Cross-Task Mental Workload Classification Performance

被引:3
作者
Wang, Tao [1 ,2 ,3 ]
Ke, Yufeng [1 ,2 ,3 ]
Huang, Yichao [1 ,2 ,3 ]
He, Feng [1 ,2 ,3 ]
Zhong, Wenxiao [1 ,2 ,3 ]
Liu, Shuang [1 ,2 ,3 ]
Ming, Dong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
[2] Haihe Lab Brain Comp Interact & Human Machine Inte, Tianjin 300392, Peoples R China
[3] Human Machine Integrat, Tianjin 300392, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Mental workload; cross-task classification; cross-subject classification; transfer learning; EEG;
D O I
10.1109/JBHI.2024.3452410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mental workload (MWL) assessment is critical for accident prevention and operator safety. However, achieving cross-task generalization of MWL classification models is a significant challenge for real-world applications. Classifiers trained on labeled samples from one task often experience a notable performance drop when directly applied to samples from other tasks, limiting its use cases. To address this issue, we propose a semi-supervised cross-task domain adaptation (SCDA) method using power spectral density (PSD) features for MWL recognition across tasks (MATB-II and n-back). Our results demonstrated that the SCDA method achieved the best cross-task classification performance on our data and COG-BCI public dataset, with accuracies of 90.98% +/- 9.36% and 96.61% +/- 4.35%, respectively. Furthermore, in the cross-task classification of cross-subject scenarios, SCDA showed the highest average accuracy (75.39% +/- 9.56% on our data, 90.98% +/- 9.36% on the COG-BCI public dataset). The findings indicate that the semi-supervised transfer learning approach using PSD features is feasible and effective for cross-task MWL assessment.
引用
收藏
页码:7032 / 7039
页数:8
相关论文
共 40 条
[1]   Measuring Mental Workload with EEG plus fNIRS [J].
Aghajani, Haleh ;
Garbey, Marc ;
Omurtag, Ahmet .
FRONTIERS IN HUMAN NEUROSCIENCE, 2017, 11
[2]   Cross-Task and Cross-Participant Classification of Cognitive Load in an Emergency Simulation Game [J].
Appel, Tobias ;
Gerjets, Peter ;
Hoffmann, Stefan ;
Moeller, Korbinian ;
Ninaus, Manuel ;
Scharinger, Christian ;
Sevcenko, Natalia ;
Wortha, Franz ;
Kasneci, Enkelejda .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) :1558-1571
[3]   Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment [J].
Arico, Pietro ;
Borghini, Gianluca ;
Di Flumeri, Gianluca ;
Colosimo, Alfredo ;
Bonelli, Stefano ;
Golfetti, Alessia ;
Pozzi, Simone ;
Imbert, Jean-Paul ;
Granger, Geraud ;
Benhacene, Railane ;
Babiloni, Fabio .
FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10
[4]   EEG-based detection of mental workload level and stress: the effect of variation in each state on classification of the other [J].
Bagheri, Mahsa ;
Power, Sarah D. .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (05)
[5]   Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification [J].
Baldwin, Carryl L. ;
Penaranda, B. N. .
NEUROIMAGE, 2012, 59 (01) :48-56
[6]   Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness [J].
Borghini, Gianluca ;
Astolfi, Laura ;
Vecchiato, Giovanni ;
Mattia, Donatella ;
Babiloni, Fabio .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2014, 44 :58-75
[7]   Multimodal Fusion for Objective Assessment of Cognitive Workload: A Review [J].
Debie, Essam ;
Fernandez Rojas, Raul ;
Fidock, Justin ;
Barlow, Michael ;
Kasmarik, Kathryn ;
Anavatti, Sreenatha ;
Garratt, Matt ;
Abbass, Hussein A. .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) :1542-1555
[8]   A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance [J].
Dehais, Frederic ;
Lafont, Alex ;
Roy, Raphaelle ;
Fairclough, Stephen .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[9]   Task-Independent Mental Workload Classification Based Upon Common Multiband EEG Cortical Connectivity [J].
Dimitrakopoulos, Georgios N. ;
Kakkos, Ioannis ;
Dai, Zhongxiang ;
Lim, Julian ;
deSouza, Joshua J. ;
Bezerianos, Anastasios ;
Sun, Yu .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (11) :1940-1949
[10]   Learning Generalized Representations of EEG between Multiple Cognitive Attention Tasks [J].
Ding, Yi ;
Ang, Nigel Wei Jun ;
Wai, Aung Aung Phyo ;
Guan, Cuntai .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :306-310