A critical review on Li-ion transport, chemistry and structure of ceramic-polymer composite electrolytes for solid state batteries

被引:6
作者
Sand, Sara Catherine [1 ]
Rupp, Jennifer L. M. [1 ,2 ,3 ,4 ]
Yildiz, Bilge [1 ,5 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Tech Univ Munich, Dept Chem, Munich, Germany
[4] TUM Int Energy Res, D-85748 Garching, Germany
[5] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LITHIUM BATTERIES; ELECTROCHEMICAL CHARACTERIZATION; RECHARGEABLE BATTERIES; POLY(ETHYLENE OXIDE); CONDUCTIVITY; PERFORMANCE; ENHANCEMENT; PARTICLES; MEMBRANE; FILLERS;
D O I
10.1039/d4cs00214h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the transition to safer, more energy-dense solid state batteries, polymer-ceramic composite electrolytes may offer a potential route to achieve simultaneously high Li-ion conductivity and enhanced mechanical stability. Despite numerous studies on the polymer-ceramic composite electrolytes, disagreements persist on whether the polymer or the ceramic is positively impacted in their constituent ionic conductivity for such composite electrolytes, and even whether the interface is a blocking layer or a highly conductive lithium ion path. This lack of understanding limits the design of effective composite solid electrolytes. By thorough and critical analysis of the data collected in the field over the last three decades, we present arguments for lithium conduction through the bulk of the polymer, ceramic, or their interface. From this analysis, we can conclude that the unexpectedly high conductivity reported for some ceramic-polymer composites cannot be accounted for by the ceramic phase alone. There is evidence to support the theory that the Li-ion conductivity in the polymer phase increases along this interface in contact with the ceramic. The potential mechanisms for this include increased free volume, decreased crystallinity, and modulated Lewis acid-base effects in the polymer, with the former two to be the more likely mechanisms. Future work in this field requires understanding these factors more quantitatively, and tuning of the ceramic surface chemistry and morphology in order to obtain targeted structural modifications in the polymer phase.
引用
收藏
页码:178 / 200
页数:23
相关论文
共 142 条
  • [1] Reducing the Crystallite Size of Spherulites in PEO-Based Polymer Nanocomposites Mediated by Carbon Nanodots and Ag Nanoparticles
    Abdullah, Ranjdar M.
    Aziz, Shujahadeen B.
    Mamand, Soran M.
    Hassan, Aso Q.
    Hussein, Sarkawt A.
    Kadir, M. E. Z.
    [J]. NANOMATERIALS, 2019, 9 (06)
  • [2] Electrochemical Characterization of a Composite Polymer Electrolyte with Improved Lithium Metal Electrode Interfacial Properties
    Appetecchi, G. B.
    Croce, F.
    Ronci, F.
    Scrosati, B.
    Alessandrini, F.
    Carewska, M.
    Prosini, P. P.
    [J]. IONICS, 1999, 5 (1-2) : 59 - 63
  • [3] Appetecchi G. B., 1998, J ELECTROCHEM SOC
  • [4] Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries
    Aravindan, Vanchiappan
    Gnanaraj, Joe
    Madhavi, Srinivasan
    Liu, Hua-Kun
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) : 14326 - 14346
  • [5] A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte
    Bae, Jiwoong
    Li, Yutao
    Zhang, Jun
    Zhou, Xingyi
    Zhao, Fei
    Shi, Ye
    Goodenough, John B.
    Yu, Guihua
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) : 2096 - 2100
  • [6] Processing thin but robust electrolytes for solid-state batteries
    Balaish, Moran
    Gonzalez-Rosillo, Juan Carlos
    Kim, Kun Joong
    Zhu, Yuntong
    Hood, Zachary D.
    Rupp, Jennifer L. M.
    [J]. NATURE ENERGY, 2021, 6 (03) : 227 - 239
  • [7] A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery
    Ban, Xiaoyao
    Zhang, Wenqiang
    Chen, Ning
    Sun, Chunwen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) : 9852 - 9858
  • [8] Charging sustainable batteries comment
    Bauer, Christian
    Burkhardt, Simon
    Dasgupta, Neil P.
    Ellingsen, Linda Ager-Wick
    Gaines, Linda L.
    Hao, Han
    Hischier, Roland
    Hu, Liangbing
    Huang, Yunhui
    Janek, Juergen
    Liang, Chengdu
    Li, Hong
    Li, Ju
    Li, Yangxing
    Lu, Yi-Chun
    Luo, Wei
    Nazar, Linda F.
    Olivetti, Elsa A.
    Peters, Jens F.
    Rupp, Jennifer L. M.
    Weil, Marcel
    Whitacre, Jay F.
    Xu, Shengming
    [J]. NATURE SUSTAINABILITY, 2022, 5 (03) : 176 - 178
  • [9] Unveiling Interfacial Li-Ion Dynamics in Li7La3Zr2O12/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries
    Bonilla, Mauricio R.
    Daza, Fabian A. Garcia
    Ranque, Pierre
    Aguesse, Frederic
    Carrasco, Javier
    Akhmatskaya, Elena
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 30653 - 30667
  • [10] Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface
    Brogioli, Doriano
    Langer, Frederieke
    Kun, Robert
    La Mantia, Fabio
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11999 - 12007