Degradation of organic pollutants on NiFe2O4/PANI/rGO nanocomposites by peroxymonosulfate activation technology

被引:1
作者
Cheng, Yuanyuan [1 ]
Zhang, Ziyang [2 ]
Hong, Yimiao [2 ]
Li, Xinyang [1 ]
Song, Hangyuan [2 ]
Zhang, Yuxi [1 ]
机构
[1] China Univ Geosci Beijing, Sch Sci, Beijing 100083, Peoples R China
[2] China Univ Geosci Beijing, Sch Earth Sci & Resources, Beijing 100083, Peoples R China
关键词
OXIDATION PROCESSES; WASTEWATERS; GRAPHENE; REMOVAL; DYES;
D O I
10.1039/d4nj05122j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increasing environmental pollution, especially water pollution, it is urgent to develop environmentally friendly, low-consumption, and efficient water treatment technology. Compared with other oxidants (H2O2, peroxydisulfate (PDS), etc.), peroxymonosulfate (PMS) can degrade organic pollutants efficiently and at high speed. It is important to design a catalyst suitable for advanced oxidation processes (AOPs). By a simple solvothermal method, metal catalyst NiFe2O4 was combined with non-metal materials polyaniline and graphene to activate PMS for rhodamine B degradation. The surface morphology and chemical composition of the catalysts were studied using SEM, EDS, XRD, Raman spectroscopy, and FR-IR. The NiFe2O4/PANI/rGO composite catalysts exhibited excellent catalytic activity such that 98.05% rhodamine B could be degraded in the presence of 0.20 g L-1 catalyst and 1.2 mM PMS within 30 min. Combined with the results of X-ray photoelectron spectroscopy characterization of catalysts before and after the catalytic reaction, it is proposed that the possible degradation mechanism is mainly that electrons provided by carbon materials are captured by dissolved oxygen in the system to generate superoxide free radicals, and metal ions react with PMS to generate sulfate free radicals. Some of the generated sulfate radicals will also be converted into hydroxyl radicals, and the organic pollutant molecules will react with the active radicals in the system to achieve the degradation of pollutants.
引用
收藏
页码:1062 / 1071
页数:10
相关论文
共 30 条
[1]   Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water [J].
Adewuyi, YG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (10) :3409-3420
[2]   Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye [J].
Ameen, Sadia ;
Seo, Hyung-Kee ;
Akhtar, M. Shaheer ;
Shin, Hyung Shik .
CHEMICAL ENGINEERING JOURNAL, 2012, 210 :220-228
[3]   Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review [J].
Brillas, Enric ;
Martinez-Huitle, Carlos A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 166 :603-643
[4]   Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms [J].
Chen, Xiao ;
Oh, Wen-Da ;
Lim, Teik-Thye .
CHEMICAL ENGINEERING JOURNAL, 2018, 354 :941-976
[5]   Recent developments in photocatalytic water treatment technology: A review [J].
Chong, Meng Nan ;
Jin, Bo ;
Chow, Christopher W. K. ;
Saint, Chris .
WATER RESEARCH, 2010, 44 (10) :2997-3027
[6]   Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents [J].
Esplugas, Santiago ;
Bila, Daniele M. ;
Krause, Luiz Gustavo T. ;
Dezotti, Marcia .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 149 (03) :631-642
[7]  
Fakir A. E. A., 2022, APPL CATAL B-ENVIRON, V300
[8]   Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites [J].
Fan, Yiang ;
Zhou, Zhengyuan ;
Feng, Yong ;
Zhou, Ying ;
Wen, Lei ;
Shih, Kaimin .
CHEMICAL ENGINEERING JOURNAL, 2020, 383
[9]   Removal of synthetic dyes from wastewaters:: a review [J].
Forgacs, E ;
Cserháti, T ;
Oros, G .
ENVIRONMENT INTERNATIONAL, 2004, 30 (07) :953-971
[10]   Application of low-cost adsorbents for dye removal - A review [J].
Gupta, V. K. ;
Suhas .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2009, 90 (08) :2313-2342