Light-weight Monocular Depth Estimation Via Cross Attention Fusion of Sparse LiDAR

被引:0
|
作者
Rim, Hyun-Woo [1 ]
Kwak, Dae-Won [2 ]
Kim, Beom-Joon [2 ]
Kim, Jin-Yeob [2 ]
Kim, Dong-Han [1 ]
机构
[1] Department of Electronics Engineering (AgeTech-Service Convergence Major), Kyung Hee University
[2] Department of Artificial Intelligence, Kyung Hee University
关键词
camera LiDAR fusion; deep-learning; monocular depth estimation; sparse LiDAR;
D O I
10.5302/J.ICROS.2024.24.0116
中图分类号
学科分类号
摘要
This article proposes a light-weight monocular depth estimation model applicable to mobile robots. Unlike autonomous vehicles, mobile robots face constraints in sensor and computing resources owing to considerations of a power efficient and lightweight design. Considering these constraints, we propose a model that estimates depth images from small camera images with minimal parameters and computational overhead. Additionally, to address the performance degradation that occurs during the model’s light-weighting process, we efficiently integrate sparse LiDAR point cloud through cross-attention mechanisms. This enables mobile robots to effectively acquire depth information about their surroundings. © ICROS 2024.
引用
收藏
页码:828 / 833
页数:5
相关论文
共 50 条
  • [41] Dual-branch Monocular Depth Estimation Method with Attention Mechanism
    Zhou, Chengying
    He, Lixin
    Wang, Handong
    Cheng, Zhi
    Yang, Jing
    Cao, Shenjie
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 421 - 426
  • [42] Attention-based context aggregation network for monocular depth estimation
    Chen, Yuru
    Zhao, Haitao
    Hu, Zhengwei
    Peng, Jingchao
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (06) : 1583 - 1596
  • [43] Attention-based context aggregation network for monocular depth estimation
    Yuru Chen
    Haitao Zhao
    Zhengwei Hu
    Jingchao Peng
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1583 - 1596
  • [44] CFDepthNet: Monocular Depth Estimation Introducing Coordinate Attention and Texture Features
    Wei, Feng
    Zhu, Jie
    Wang, Huibin
    Shen, Jie
    NEURAL PROCESSING LETTERS, 2024, 56 (03)
  • [45] Monocular depth estimation via a detail semantic collaborative network for indoor scenes
    Song, Wen
    Cui, Xu
    Xie, Yakun
    Wang, Guohua
    Ma, Jiexi
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [46] Unsupervised Monocular Depth Estimation From Light Field Image
    Zhou, Wenhui
    Zhou, Enci
    Liu, Gaomin
    Lin, Lili
    Lumsdaine, Andrew
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1606 - 1617
  • [47] Light-Weight EPINET Architecture for Fast Light Field Disparity Estimation
    Hassan, Ali
    Sjostrom, Marten
    Zhang, Tingting
    Egiazarian, Karen
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [48] LFDA: A Framework for Light Field Depth Estimation With Depth Attention
    Kim, Hyeongsik
    Han, Seungjin
    Kim, Youngseop
    IEEE ACCESS, 2024, 12 : 65032 - 65040
  • [49] Lightweight monocular depth estimation using a fusion-improved transformer
    Sui, Xin
    Gao, Song
    Xu, Aigong
    Zhang, Cong
    Wang, Changqiang
    Shi, Zhengxu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] FF-GAN: Feature Fusion GAN for Monocular Depth Estimation
    Jia, Ruiming
    Li, Tong
    Yuan, Fei
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 167 - 179