Light-weight Monocular Depth Estimation Via Cross Attention Fusion of Sparse LiDAR

被引:0
|
作者
Rim, Hyun-Woo [1 ]
Kwak, Dae-Won [2 ]
Kim, Beom-Joon [2 ]
Kim, Jin-Yeob [2 ]
Kim, Dong-Han [1 ]
机构
[1] Department of Electronics Engineering (AgeTech-Service Convergence Major), Kyung Hee University
[2] Department of Artificial Intelligence, Kyung Hee University
关键词
camera LiDAR fusion; deep-learning; monocular depth estimation; sparse LiDAR;
D O I
10.5302/J.ICROS.2024.24.0116
中图分类号
学科分类号
摘要
This article proposes a light-weight monocular depth estimation model applicable to mobile robots. Unlike autonomous vehicles, mobile robots face constraints in sensor and computing resources owing to considerations of a power efficient and lightweight design. Considering these constraints, we propose a model that estimates depth images from small camera images with minimal parameters and computational overhead. Additionally, to address the performance degradation that occurs during the model’s light-weighting process, we efficiently integrate sparse LiDAR point cloud through cross-attention mechanisms. This enables mobile robots to effectively acquire depth information about their surroundings. © ICROS 2024.
引用
收藏
页码:828 / 833
页数:5
相关论文
共 50 条
  • [31] Joint Attention Mechanisms for Monocular Depth Estimation With Multi-Scale Convolutions and Adaptive Weight Adjustment
    Liu, Peng
    Zhang, Zonghua
    Meng, Zhaozong
    Gao, Nan
    IEEE ACCESS, 2020, 8 (184437-184450) : 184437 - 184450
  • [32] Monocular Depth Estimation Based on Multi-Scale Depth Map Fusion
    Yang, Xin
    Chang, Qingling
    Liu, Xinglin
    He, Siyuan
    Cui, Yan
    IEEE ACCESS, 2021, 9 : 67696 - 67705
  • [33] A Robust Light-Weight Fused-Feature Encoder-Decoder Model for Monocular Facial Depth Estimation From Single Images Trained on Synthetic Data
    Khan, Faisal
    Shariff, Waseem
    Farooq, Muhammad Ali
    Basak, Shubhajit
    Corcoran, Peter
    IEEE ACCESS, 2023, 11 : 41480 - 41491
  • [34] CNNapsule: A Lightweight Network with Fusion Features for Monocular Depth Estimation
    Wang, Yinchu
    Zhu, Haijiang
    Liu, Mengze
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 507 - 518
  • [35] Monocular Depth Estimation Based on Dilated Convolutions and Feature Fusion
    Li, Hang
    Liu, Shuai
    Wang, Bin
    Wu, Yuanhao
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [36] Scale-Invariant Monocular Depth Estimation via SSI Depth
    Miangoleh, S. Mahdi H.
    Reddy, Mahesh
    Aksoy, Yagiz
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [37] Optimize Vision Transformer Architecture via Efficient Attention Modules: A Study on the Monocular Depth Estimation Task
    Schiavella, Claudio
    Cirillo, Lorenzo
    Papa, Lorenzo
    Russo, Paolo
    Amerini, Irene
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT I, 2024, 14365 : 383 - 394
  • [38] A Simple and Light-Weight Attention Module for Convolutional Neural Networks
    Park, Jongchan
    Woo, Sanghyun
    Lee, Joon-Young
    Kweon, In So
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (04) : 783 - 798
  • [39] Monocular Depth Estimation of Old Photos via Collaboration of Monocular and Stereo Networks
    Kim, Ju Ho
    Ko, Kwang-Lim
    Ha, Le Thanh Le
    Jung, Seung-Won
    IEEE ACCESS, 2023, 11 : 11675 - 11684
  • [40] A Simple and Light-Weight Attention Module for Convolutional Neural Networks
    Jongchan Park
    Sanghyun Woo
    Joon-Young Lee
    In So Kweon
    International Journal of Computer Vision, 2020, 128 : 783 - 798