Mechanism of Molecular Polariton Decoherence in the Collective Light-Matter Couplings Regime

被引:12
作者
Chng, Benjamin X. K. [1 ]
Ying, Wenxiang [2 ]
Lai, Yifan [2 ]
Vamivakas, A. Nickolas [1 ,3 ,4 ]
Cundiff, Steven T. [5 ]
Krauss, Todd D. [2 ,3 ,4 ]
Huo, Pengfei [2 ,3 ,4 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[3] Univ Rochester, Inst Opt, Hajim Sch Engn, Rochester, NY 14627 USA
[4] Univ Rochester, Ctr Coherence & Quantum Opt, Rochester, NY 14627 USA
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATION; QUANTUM; DYNAMICS; CRYSTAL;
D O I
10.1021/acs.jpclett.4c03049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular polaritons, the hybridization of electronic states in molecules with photonic excitation inside a cavity, play an important role in fundamental quantum science and technology. Understanding the decoherence mechanism of molecular polaritons is among the most significant fundamental questions. We theoretically demonstrate that hybridizing many molecular excitons in a cavity protects the overall quantum coherence from phonon-induced decoherence. The polariton coherence time can be prolonged up to 100 fs with a realistic collective Rabi splitting and quality factor at room temperature, compared to the typical electronic coherence time which is around 15 fs. Our numerically exact simulations and analytic theory suggest that the dominant decoherence mechanism is the population transfer from the upper polariton state to the dark state manifold. Increasing the collective coupling strength will increase the energy gap between these two sets of states and thus prolong the coherence lifetime. We further derived valuable scaling relations that directly indicate how polariton coherence depends on the number of molecules, Rabi splittings, and light-matter detunings.
引用
收藏
页码:11773 / 11783
页数:11
相关论文
共 64 条
[11]  
Coles DM, 2014, NAT MATER, V13, P712, DOI [10.1038/NMAT3950, 10.1038/nmat3950]
[12]   Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode [J].
del Pino, Javier ;
Feist, Johannes ;
Garcia-Vidal, Francisco J. .
NEW JOURNAL OF PHYSICS, 2015, 17
[13]   Exciton-polariton Bose-Einstein condensation [J].
Deng, Hui ;
Haug, Hartmut ;
Yamamoto, Yoshihisa .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1489-1537
[14]   Polaritonic Chemistry with Organic Molecules [J].
Feist, Johannes ;
Galego, Javier ;
Garcia-Vidal, Francisco J. .
ACS PHOTONICS, 2018, 5 (01) :205-216
[15]   Room-Temperature Polariton Lasing from CdSe Core-Only Nanoplatelets [J].
Freire-Fernandez, Francisco ;
Sinai, Nathan G. ;
Tan, Max Jin Hui ;
Park, Sang-Min ;
Koessler, Eric Rodolfo ;
Krauss, Todd ;
Huo, Pengfei ;
Odom, Teri W. .
ACS NANO, 2024, 18 (23) :15177-15184
[16]   Quantum computing with exciton-polariton condensates [J].
Ghosh, Sanjib ;
Liew, Timothy C. H. .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[17]   Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations [J].
Groenhof, Gerrit ;
Climent, Claudia ;
Feist, Johannes ;
Morozov, Dmitry ;
Toppari, J. Jussi .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (18) :5476-5483
[18]   Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States [J].
Herrera, Felipe ;
Spano, Frank C. .
ACS PHOTONICS, 2018, 5 (01) :65-79
[19]   Cavity-Controlled Chemistry in Molecular Ensembles [J].
Herrera, Felipe ;
Spano, Frank C. .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[20]   Tuning and Enhancing Quantum Coherence Time Scales in Molecules via Light-Matter Hybridization [J].
Hu, Wenxiang ;
Gustin, Ignacio ;
Krauss, Todd D. ;
Franco, Ignacio .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (49) :11503-11511