Discharge characteristics and ozone generation during CO2 to CO conversion by dielectric barrier discharge packed with TiO2-coated glass beads

被引:1
作者
El Shaer, Mohamed [1 ]
Gabr, Heba [1 ]
Zaki, Ahmed [1 ]
Awad, Milad [1 ]
Ashraf, Mahmoud [1 ]
Mobasher, Mona [1 ]
Phillips, Adel [2 ]
Afify, Hassan [3 ]
机构
[1] Zagazig Univ, Fac Engn, Dept Engn Phys & Math, Plasma & Energy Applicat Res Lab, Zagazig 44519, Egypt
[2] Ain Shams Univ, Fac Engn, Dept Engn Phys & Math, Cairo 11535, Egypt
[3] Natl Res Ctr, Dept Solid State Phys, Phys Div, Dokki 12622, Egypt
关键词
CARBON-DIOXIDE; PLASMA; DECOMPOSITION; CATALYSIS;
D O I
10.1140/epjd/s10053-024-00927-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A packed-bed dielectric barrier discharge was used to investigate CO2 to CO conversion under different operating conditions as frequency, CO2/Ar gas mixture composition and gas flow rate, to understand the effects of their variations on current-voltage discharge characteristics, CO2 to CO conversion ratios, CO yields, and ozone production. Using TiO2-coated glass beads has changed the discharge behavior from the glow mode to a combined filamentary and surface discharge mode, making the discharge more diffuse for higher frequencies in the range of 3.6 to 6 kHz. Higher CO2 to CO conversion and CO yield are achieved by lowering both operating frequencies and CO2 concentrations in CO2/Ar gas mixture. For TiO2-coated glass beads packed discharge, increasing discharge frequency from 3.6 to 6 kHz lower CO2 conversion from 11.2% to 2.5%, while increasing CO2 concentrations in CO2/Ar gas mixture from 10 to 40% lowers conversion from 11.2% to 5%. The enhancement of ozone production by the introduction of TiO2-coated glass beads packing material may be related to improvements of conversion ratio from CO2 to CO and CO yield showing their larger values at lower frequencies and lower CO2 percentages in CO2/Ar gas mixture. Using inexpensive and easily synthesized in large quantities catalyst material, realized by TiO2 coating of glass beads in a microwave plasma torch, has permitted to reach DBD operational modes adequate for CO production in moderate concentrations suitable for applications in medicine and agriculture.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Exploring the CO2 conversion activated by the dielectric barrier discharge plasma assisted with photocatalyst via machine learning [J].
Luo, Wen ;
Shen, Yangyi ;
Fu, Chengfan ;
Feng, Xiao ;
Huang, Qiang .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06)
[42]   Decomposition of CO2 in Atmospheric-Pressure Barrier Discharge (Analytical Review) [J].
Lebedev, Yu A. ;
Shakhatov, V. A. .
PLASMA PHYSICS REPORTS, 2022, 48 (06) :693-710
[43]   CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution [J].
Mei, Danhua ;
Duan, Gehui ;
Fu, Junhui ;
Liu, Shiyun ;
Zhou, Renwu ;
Zhou, Rusen ;
Fang, Zhi ;
Cullen, Patrick J. ;
Ostrikov, Kostya .
JOURNAL OF CO2 UTILIZATION, 2021, 53
[44]   STUDYING CO2 CONVERSION IN DC GLOW DISCHARGE [J].
Lisovskiy, V. A. ;
Dudin, S., V ;
Platonov, P. P. ;
Yegorenkov, V. D. .
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2020, (06) :179-184
[45]   NO Conversion by Dielectric Barrier Discharge and TiO2 Catalyst: Effect of Oxygen [J].
Jogi, I. ;
Bichevin, V. ;
Laan, M. ;
Haljaste, A. ;
Kaeaembre, H. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2009, 29 (03) :205-215
[46]   NO Conversion by Dielectric Barrier Discharge and TiO2 Catalyst: Effect of Oxygen [J].
I. Jõgi ;
V. Bichevin ;
M. Laan ;
A. Haljaste ;
H. Käämbre .
Plasma Chemistry and Plasma Processing, 2009, 29 :205-215
[47]   Research progress and the prospect of CO2 hydrogenation with dielectric barrier discharge plasma technology [J].
Ziyi Zhang ;
Honglei Ding ;
Qi Zhou ;
Weiguo Pan ;
Kaina Qiu ;
Xiaotian Mu ;
Junchi Ma ;
Kai Zhang ;
Yuetong Zhao .
Carbon Letters, 2023, 33 :973-987
[48]   Experimental Study on the Electrical Characteristics of Low-Pressure Nanosecond Pulsed CO2 Dielectric Barrier Discharge [J].
Dong, Jie ;
Bai, Jixin ;
Wang, Xucheng ;
Sun, Ying ;
Guo, Xu ;
Zhang, Yuantao .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (05) :7711-7720
[49]   Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma [J].
Gao, Xingyuan ;
Liang, Jinglong ;
Wu, Liqing ;
Wu, Lixia ;
Kawi, Sibudjing .
CATALYSTS, 2022, 12 (01)
[50]   Numerical study on the reaction mechanism of CO2 hydrogenation in atmospheric-pressure dielectric barrier discharge [J].
Liao, Yukun ;
Zhong, Wangshen ;
Qian, Muyang ;
Liu, Sanqiu ;
Zhang, Jialiang ;
Wang, Dezhen .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (23)