THNet: Transferability-Aware Hierarchical Network for Robust Cross-Domain Object Detection

被引:0
作者
Song, Wu [1 ]
Ren, Sheng [1 ]
Tan, Wenxue [1 ]
Wang, Xiping [1 ]
机构
[1] Hunan Univ Arts & Sci, Sch Comp & Elect Engn, Changde 415000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Object detection; Feature extraction; Training; Detectors; Adversarial machine learning; Adaptation models; Prototypes; Residual neural networks; Remote sensing; Mathematical models; Cross-domain object detection; hierarchical domain alignment; domain-consistent loss; transferable attention; adversarial learning;
D O I
10.1109/ACCESS.2024.3480351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has advanced object detection, but generalizing models from source to target domains remains a challenge due to multi-level domain drift and untransferable information. To address this, we propose a transferability-aware hierarchical domain-consistent object detector (THNet), incorporating instance-level, pixel-level, and image-level alignment subnets for robust cross-domain detection. THNet first aligns local foreground-transferable features through pixel-level adversarial learning and foreground-aware attention, then captures global domain-invariant features via image-level subnet with channel-transferable attention. Additionally, a prototype graph convolutional network alleviates instance distribution differences by maximizing inter-class distances and minimizing intra-class distances. A domain-consistent loss harmonizes training for better convergence in multi-level domain alignment. Extensive experiments demonstrate that THNet outperforms state-of-the-art methods on multiple cross-domain datasets, achieving top accuracies of 51.9%, 46.0%, 41.2%, and 51.9% across different tasks.
引用
收藏
页码:155469 / 155484
页数:16
相关论文
共 41 条
  • [1] Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night
    Arruda, Vinicius F.
    Paixao, Thiago M.
    Berriel, Rodrigo F.
    De Souza, Alberto F.
    Badue, Claudine
    Sebe, Nicu
    Oliveira-Santos, Thiago
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [2] Exploring Object Relation in Mean Teacher for Cross-Domain Detection
    Cai, Qi
    Pan, Yingwei
    Ngo, Chong-Wah
    Tian, Xinmei
    Duan, Lingyu
    Yao, Ting
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11449 - 11458
  • [3] Chen CQ, 2020, PROC CVPR IEEE, P8866, DOI 10.1109/CVPR42600.2020.00889
  • [4] Domain Adaptive Faster R-CNN for Object Detection in the Wild
    Chen, Yuhua
    Li, Wen
    Sakaridis, Christos
    Dai, Dengxin
    Van Gool, Luc
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3339 - 3348
  • [5] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Ganin Y, 2016, J MACH LEARN RES, V17
  • [8] Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
  • [9] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [10] Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation
    Ghifary, Muhammad
    Kleijn, W. Bastiaan
    Zhang, Mengjie
    Balduzzi, David
    Li, Wen
    [J]. COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 597 - 613