Effects of High Temperature and High Pressure on the Photoluminescence of CdTe Quantum Dots: Implication for the High-Temperature Resistance Application of Nano-Stress Sensing Materials

被引:0
作者
Wang, Jundiao [1 ,2 ]
Bao, Ke [1 ,2 ]
Liu, Yue [1 ,2 ]
Mao, Feihong [1 ,2 ]
Ren, Peirong [3 ]
机构
[1] China North Vehicle Res Inst, Beijing 100072, Peoples R China
[2] Chinese Scholartree Ridge State Key Lab, Beijing 100072, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
关键词
CdTe quantum dots; photoluminescence; high pressure; high temperature; stress sensing; NANOCRYSTALS; LUMINESCENCE; DYNAMICS; GROWTH;
D O I
10.3390/ma18040746
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-sized quantum dots (QDs) have the potential for the application of stress sensing materials based on their pressure-sensitive photoluminescence (PL) properties, while the influence of a more realistic loading environment on the PL characteristics of QDs under a high-temperature environment remains to be further studied. Herein, we studied the PL response of CdTe QDs under repetitive loading-unloading conditions under high-temperature coupling to explore the stability of its high temperature stress sensing potential. The results show that the CdTe QDs with size of 3.2 nm can detect pressure in the range of 0-5.4 GPa, and the pressure sensitivity coefficient of PL emission peak energy (EPL) is about 0.054 eV/GPa. Moreover, the relationship between EPL and pressure of CdTe QDs is not sensitive to high temperature and repeated loading, which meets the stability requirements of the sensing function required for stress sensing materials under high temperature. However, the disappearance of PL intensity caused by spontaneous growth as well as the ligand instability of QDs induced by high temperature/high pressure affects the availability of EPL, which has a great influence on the application of CdTe QDs as high-temperature-resistant nano-stress sensing materials. The research provides the mechanical luminescence response mechanism of CdTe QDs under high-temperature/high-pressure coupling conditions, which provides experimental support for the design of high-temperature/high-pressure-resistant QD structures.
引用
收藏
页数:13
相关论文
共 39 条
  • [21] Xiao P., Ke F., Bai Y., Zhou M., Deformation-induced blueshift in emission spectrum of CdTe quantum dot composites, Compos. Part B Eng, 120, pp. 54-62, (2017)
  • [22] Wang J., Shi R., Xiao P., The effect of loading modes on the strain-dependent energy gap of CdTe quantum dots: A first-principles study, Comput. Mater. Sci, 217, (2023)
  • [23] Huang X., Jing L., Kershaw S.V., Wei X., Ning H., Sun X., Rogach A.L., Gao M., Narrowing the photoluminescence of aqueous CdTe quantum dots via ostwald ripening suppression realized by programmed dropwise precursor addition, J. Phys. Chem. C, 122, pp. 11109-11118, (2018)
  • [24] Wang Y., Guo S., Luo H., Zhou C., Lin H., Ma X., Hu Q., Du M.-H., Ma B., Yang W., Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss, J. Am. Chem. Soc, 142, pp. 16001-16006, (2020)
  • [25] Liu H., Yang X., Wang K., Wang Y., Wu M., Zuo X., Yang W., Zou B., Pressure-induced multidimensional assembly and sintering of CuInS2 nanoparticles into lamellar nanosheets with band gap narrowing, ACS Appl. Nano Mater, 3, pp. 2438-2446, (2020)
  • [26] Zhou B., Xiao G., Yang X., Li Q., Wang K., Wang Y., Pressure-dependent optical behaviors of colloidal CdSe nanoplatelets, Nanoscale, 7, pp. 8835-8842, (2015)
  • [27] Freire P., Silva M.A., Reynoso V., Vaz A., Lemos V., Pressure Raman scattering of CdTe quantum dots, Phys. Rev. B, 55, (1997)
  • [28] Cingolani R., Di Dio M., Lomascolo M., Rinaldi R., Prete P., Vasanelli L., Vanzetti L., Bassani F., Bonanni A., Sorba L., Photocurrent spectroscopy of Zn 1− x Cd x Se/ZnSe quantum wells in p-i-n heterostructures, Phys. Rev. B, 50, (1994)
  • [29] Sapra S., Sarma D., Evolution of the electronic structure with size in II-VI semiconductor nanocrystals, Phys. Rev. B, 69, (2004)
  • [30] Zhao H., Yin H., Liu X., Li H., Shi Y., Liu C., Jin M., Gao J., Luo Y., Ding D., Pressure-induced tunable electron transfer and Auger recombination rates in CdSe/ZnS quantum dot–anthraquinone complexes, J. Phys. Chem. Lett, 10, pp. 3064-3070, (2019)