Biomass-Derived Carbon-Coated FeCo Alloys as Highly Efficient Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries

被引:0
|
作者
Lin, Kangdi [1 ]
Chen, Meijie [1 ]
Zhou, Zihao [1 ]
Huang, Hongyun [1 ]
Zhang, Jinlian [1 ]
Peng, Shaomin [1 ,2 ]
Sun, Ming [1 ,2 ]
Yu, Lin [1 ,2 ]
机构
[1] Jieyang Branch Chem & Chem Engn, Guangdong Lab, Rongjiang Lab, Jieyang 515200, Peoples R China
[2] Guangdong Univ Technol, Guangdong Engn Technol Res Ctr Modern Fine Chem En, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 23期
关键词
bifunctional catalyst; zinc-air battery; oxygen reduction reaction; oxygen evolution reaction; alloy nanoparticles; biomass-derived carbon; N-DOPED CARBON; OXYGEN REDUCTION; PYROLYSIS SYNTHESIS; ACTIVE-SITES; NANOPARTICLES; NITROGEN; NANOTUBES; EVOLUTION; NANOSHEETS; GRAPHENE;
D O I
10.1021/acsaem.4c02432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of highly effective bifunctional electrocatalysts for the oxygen reduction (ORR) and evolution reactions (OERs) is pivotal for the advancement of rechargeable zinc-air batteries (ZABs) with superior electrochemical performance. This study presents a facile strategy for the synthesis of a biomass-derived nitrogen-doped carbon-coated FeCo catalyst. By optimizing the calcination temperature, the FeCo@NC-900, synthesized at 900 degrees C, demonstrates superior ORR/OER performance, with a half-wave potential of 0.81 V for ORR and an overpotential of 349 mV to drive a current density of 10 mA cm-2 for OER. Electrochemical testing of ZABs employing FeCo@NC-900 as electrode catalysts reveals excellent performance, with a peak power density of 103.6 mW cm-2 at 160 mA cm-2 and sustains operation for over 300 h at a current density of 5 mA cm-2 with superior cycling stability. These results surpass those of the Pt/C-RuO2-based counterpart. Given its low cost and straightforward preparation, FeCo@NC-900 emerges as a highly promising catalyst for energy storage and conversion applications.
引用
收藏
页码:11172 / 11183
页数:12
相关论文
共 50 条
  • [41] Carbon-coated ZnS as a high-performance ORR/OER bifunctional cathode catalyst for zinc-air batteries
    Lin, Chenfeng
    Yin, Yizhi
    Wang, Guandong
    Cao, Xin
    Ma, Jinfu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 221 - 228
  • [42] Iron-nickel alloy nanoparticles encapsulated in nitrogen-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc-air batteries
    Xie, Weichao
    Liu, Yijiang
    Chen, Hongbiao
    Yang, Mei
    Liu, Bei
    Li, Huaming
    Journal of Colloid and Interface Science, 2022, 625 : 278 - 288
  • [43] CoFe/N doped biomass-derived carbon as multi-layer porous efficient bifunctional composite for zinc-air battery
    Yang, Jincai
    Wu, Shang
    Li, Jiankun
    Tian, Shuo
    Wang, Jiajia
    Feng, Bianli
    Wang, Xia
    Chen, Chen
    Wang, Yanbin
    Yang, Quanlu
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [44] Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries
    Li, Po-Chieh
    Chien, Yu-Ju
    Hu, Chi-Chang
    JOURNAL OF POWER SOURCES, 2016, 313 : 37 - 45
  • [45] Covalent organic polymer derived N-doped carbon confined FeNi alloys as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery
    Chen, Jun
    Li, Liandong
    Cheng, Yuanhui
    Huang, Yan
    Chen, Chang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (36) : 16025 - 16035
  • [46] Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries via alloying degree control strategy
    Song, Lianghao
    Zhang, Jing
    Sarkar, Samrat
    Zhao, Chenfei
    Wang, Zhenwei
    Huang, Chengyu
    Yan, Liuming
    Zhao, Yufeng
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [47] Carbon-Layer-Protected CoP/Carbon Nanosheets as Highly Durable Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries
    Liu, Maosong
    Lv, Xianhe
    Mi, Zhiqiang
    Chen, Shanliang
    Li, Jianhua
    Wu, Jiqing
    Sun, Tao
    Zhang, Long
    Zhang, Jianming
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7317 - 7322
  • [48] Highly Efficient Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries: Surface-Oxidized Cobaltous Fluoride Nanocrystals Embedded in Carbon Nanofibers
    Qiao, Bin
    Zhang, Jing
    Li, Xuhui
    Ning, Xingming
    An, Zhongwei
    Chen, Xinbing
    Chen, Yu
    Chen, Pei
    ACS APPLIED ENGINEERING MATERIALS, 2024, 2 (04): : 894 - 904
  • [49] γ-CD-MOF-derived heterostructures as bifunctional electrocatalysts for rechargeable zinc-air batteries
    Chai, Ruirui
    Sang, Xinxin
    Ou, Shiguo
    Li, Jiahao
    Song, Junling
    Wang, Dawei
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (07) : 1656 - 1663
  • [50] Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries
    Zhenjie Lu
    Songdong Yao
    Yanzeng Dong
    Dongling Wu
    Haoran Pan
    Xinning Huang
    Tao Wang
    Zhenyu Sun
    Xingxing Chen
    Journal of Energy Chemistry , 2021, (05) : 87 - 97