Biomass-Derived Carbon-Coated FeCo Alloys as Highly Efficient Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries

被引:0
|
作者
Lin, Kangdi [1 ]
Chen, Meijie [1 ]
Zhou, Zihao [1 ]
Huang, Hongyun [1 ]
Zhang, Jinlian [1 ]
Peng, Shaomin [1 ,2 ]
Sun, Ming [1 ,2 ]
Yu, Lin [1 ,2 ]
机构
[1] Jieyang Branch Chem & Chem Engn, Guangdong Lab, Rongjiang Lab, Jieyang 515200, Peoples R China
[2] Guangdong Univ Technol, Guangdong Engn Technol Res Ctr Modern Fine Chem En, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 23期
关键词
bifunctional catalyst; zinc-air battery; oxygen reduction reaction; oxygen evolution reaction; alloy nanoparticles; biomass-derived carbon; N-DOPED CARBON; OXYGEN REDUCTION; PYROLYSIS SYNTHESIS; ACTIVE-SITES; NANOPARTICLES; NITROGEN; NANOTUBES; EVOLUTION; NANOSHEETS; GRAPHENE;
D O I
10.1021/acsaem.4c02432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of highly effective bifunctional electrocatalysts for the oxygen reduction (ORR) and evolution reactions (OERs) is pivotal for the advancement of rechargeable zinc-air batteries (ZABs) with superior electrochemical performance. This study presents a facile strategy for the synthesis of a biomass-derived nitrogen-doped carbon-coated FeCo catalyst. By optimizing the calcination temperature, the FeCo@NC-900, synthesized at 900 degrees C, demonstrates superior ORR/OER performance, with a half-wave potential of 0.81 V for ORR and an overpotential of 349 mV to drive a current density of 10 mA cm-2 for OER. Electrochemical testing of ZABs employing FeCo@NC-900 as electrode catalysts reveals excellent performance, with a peak power density of 103.6 mW cm-2 at 160 mA cm-2 and sustains operation for over 300 h at a current density of 5 mA cm-2 with superior cycling stability. These results surpass those of the Pt/C-RuO2-based counterpart. Given its low cost and straightforward preparation, FeCo@NC-900 emerges as a highly promising catalyst for energy storage and conversion applications.
引用
收藏
页码:11172 / 11183
页数:12
相关论文
共 50 条
  • [1] MnOx anchored on N and O co-doped carbon nanotubes encapsulated with FeCo alloy as highly efficient bifunctional electrocatalyst for rechargeable Zinc-Air batteries
    Chen, Shanhua
    Huang, Yanqing
    Li, Ming
    Sun, Panpan
    Lv, Xiaowei
    Li, Bing
    Fang, Liang
    Sun, Xiaohua
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [2] Interface Engineering of CoO/N-Doped Carbon Nanomaterials as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Sun, Qiming
    Zhao, Yiwei
    Yu, Xiaodan
    Zhang, Chao
    Xing, Shuangxi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [3] Biomass Waste-Derived 3D Metal-Free Porous Carbon as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Li, Qiang
    He, Ting
    Zhang, Ya-Qian
    Wu, Huiqiong
    Liu, Jingjing
    Qi, Yujie
    Lei, Yongpeng
    Chen, Hong
    Sun, Zhifang
    Peng, Cheng
    Yi, Lunzhao
    Zhang, Yi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (20) : 17039 - 17046
  • [4] Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc-Air Batteries
    Liu, Yanyan
    Sun, Kang
    Cui, Xingyu
    Li, Baojun
    Jiang, Jianchun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (07) : 2981 - 2989
  • [5] Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries
    Liu, Xien
    Park, Minjoon
    Kim, Min Gyu
    Gupta, Shiva
    Wu, Gang
    Cho, Jaephil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (33) : 9654 - 9658
  • [6] FeCo Alloy Nanoparticles on Porous Carbon for Zinc-Air Batteries
    Sun, Di
    Cui, Haokang
    Sha, Junwei
    Chen, Biao
    Shi, Chunsheng
    Kang, Jianli
    Ma, Liying
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14760 - 14768
  • [7] A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries
    Liu, Jia-Ning
    Li, Bo-Quan
    Zhao, Chang-Xin
    Yu, Jia
    Zhang, Qiang
    CHEMSUSCHEM, 2020, 13 (06) : 1529 - 1536
  • [8] N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries
    Ding, Jieting
    Wang, Peng
    Ji, Shan
    Wang, Hui
    Linkov, Vladimir
    Wang, Rongfang
    ELECTROCHIMICA ACTA, 2019, 296 : 653 - 661
  • [9] Controllable Construction of Bifunctional CoxP@N,P-Doped Carbon Electrocatalysts for Rechargeable Zinc-Air Batteries
    Shi, Qing
    Liu, Qiao
    Zheng, Yapeng
    Dong, Yaqian
    Wang, Lin
    Liu, Hantao
    Yang, Weiyou
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (02) : 515 - 523
  • [10] FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery
    Wang, Zhe
    Ang, Jiaming
    Liu, Jian
    Ma, Xiu Yun Daphne
    Kong, Junhua
    Zhang, Youfang
    Yan, Tao
    Lu, Xuehong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263