To Boost Zero-Shot Generalization for Embodied Reasoning With Vision-Language Pre-Training

被引:0
|
作者
Su, Ke [1 ]
Zhang, Xingxing [1 ]
Zhang, Siyang [2 ]
Zhu, Jun [1 ,3 ,4 ]
Zhang, Bo [1 ]
机构
[1] Tsinghua Univ, Inst AI, Tsinghua Bosch Joint ML Ctr, BNRist Ctr,Dept Comp Sci & Technol,THBI Lab, Beijing 100084, Peoples R China
[2] Nankai Univ, Sch Artificial Intelligence, Tianjin 300071, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518066, Peoples R China
[4] Pazhou Lab Huangpu, Guangzhou 510700, Peoples R China
关键词
Cognition; Visualization; Artificial intelligence; Training; Three-dimensional displays; Image reconstruction; Navigation; Embodied artificial intelligence; embodied reasoning; zero-shot generalization; vision-language pre-training;
D O I
10.1109/TIP.2024.3459800
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, there exists an increased research interest in embodied artificial intelligence (EAI), which involves an agent learning to perform a specific task when dynamically interacting with the surrounding 3D environment. There into, a new challenge is that many unseen objects may appear due to the increased number of object categories in 3D scenes. It makes developing models with strong zero-shot generalization ability to new objects necessary. Existing work tries to achieve this goal by providing embodied agents with massive high-quality human annotations closely related to the task to be learned, while it is too costly in practice. Inspired by recent advances in pre-trained models in 2D visual tasks, we attempt to boost zero-shot generalization for embodied reasoning with vision-language pre-training that can encode common sense as general prior knowledge. To further improve its performance on a specific task, we rectify the pre-trained representation through masked scene graph modeling (MSGM) in a self-supervised manner, where the task-specific knowledge is learned from iterative message passing. Our method can improve a variety of representative embodied reasoning tasks by a large margin (e.g., over 5.0% w.r.t. answer accuracy on MP3D-EQA dataset that consists of many real-world scenes with a large number of new objects during testing), and achieve the new state-of-the-art performance.
引用
收藏
页码:5370 / 5381
页数:12
相关论文
共 27 条
  • [1] IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-Training
    Liu, Che
    Cheng, Sibo
    Shi, Miaojing
    Shah, Anand
    Bai, Wenjia
    Arcucci, Rossella
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 519 - 529
  • [2] Unsupervised Domain Adaption Harnessing Vision-Language Pre-Training
    Zhou, Wenlve
    Zhou, Zhiheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8201 - 8214
  • [3] Enhancing medical text detection with vision-language pre-training and efficient segmentation
    Li, Tianyang
    Bai, Jinxu
    Wang, Qingzhu
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3995 - 4007
  • [4] Enhancing Vision-Language Pre-Training with Jointly Learned Questioner and Dense Captioner
    Liu, Zikang
    Chen, Sihan
    Guo, Longteng
    Li, Handong
    He, Xingjian
    Liu, Jing
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5120 - 5131
  • [5] Efficient Medical Images Text Detection with Vision-Language Pre-training Approach
    Li, Tianyang
    Bai, Jinxu
    Wang, Qingzhu
    Xu, Hanwen
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [6] Multi-Task Paired Masking With Alignment Modeling for Medical Vision-Language Pre-Training
    Zhang, Ke
    Yang, Yan
    Yu, Jun
    Jiang, Hanliang
    Fan, Jianping
    Huang, Qingming
    Han, Weidong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4706 - 4721
  • [7] Omniview-Tuning: Boosting Viewpoint Invariance of Vision-Language Pre-training Models
    Ruan, Shouwei
    Dong, Yinpeng
    Liu, Hanging
    Huang, Yao
    Su, Hang
    Wei, Xingxing
    COMPUTER VISION - ECCV 2024, PT XXVI, 2025, 15084 : 309 - 327
  • [8] Noise-Robust Vision-Language Pre-Training With Positive-Negative Learning
    Huang, Zhenyu
    Yang, Mouxing
    Xiao, Xinyan
    Hu, Peng
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (01) : 338 - 350
  • [9] Language Matters: A Weakly Supervised Vision-Language Pre-training Approach for Scene Text Detection and Spotting
    Xue, Chuhui
    Zhang, Wenqing
    Hao, Yu
    Lu, Shijian
    Torr, Philip H. S.
    Bai, Song
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 284 - 302
  • [10] Enhancing Visual Grounding in Vision-Language Pre-Training With Position-Guided Text Prompts
    Wang, Alex Jinpeng
    Zhou, Pan
    Shou, Mike Zheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3406 - 3421