Geospatial Mapping of Large-Scale Electric Power Grids: A Residual Graph Convolutional Network-Based Approach with Attention Mechanism

被引:0
|
作者
Ahshan, Razzaqul [1 ]
Abid, Shadman [2 ]
Al-Abri, Mohammed [2 ,3 ]
机构
[1] Sultan Qaboos Univ, Coll Engn, Dept Elect & Comp Engn, Al Khoud 123, Oman
[2] Sultan Qaboos Univ, Nanotechnol Res Ctr, Al Khoud 123, Oman
[3] Sultan Qaboos Univ, Coll Engn, Dept Petr & Chem Engn, Al Khoud 123, Oman
关键词
Deep learning; Graph convolutional network; Energy infrastructure; Geospatial mapping; Attention mechanism;
D O I
10.1016/j.egyai.2025.100486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure. The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems (GISs) has yet to be thoroughly investigated in previous research works. Moreover, although graph convolutional networks (GCNs) have been proven to be effective in capturing the complex linkages within graph-structured data, the computationally demanding nature of modern energy grids necessitates additional computational contributions. Hence, this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts. The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure, such as poles, electricity service points, and substations. The proposed framework is assessed on the Sultanate of Oman's regional energy grid and further validated on Nigeria's electricity transmission network database. The obtained findings showcase the model's capacity to accurately predict infrastructure components and their spatial relationships. Results show that the proposed method achieves a link-prediction accuracy of 95.88% for the Omani network and 92.98% for the Nigerian dataset. Furthermore, the proposed model achieved R2 values of 0.99 for both datasets in terms of regression. Therefore, the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [22] SEMI-SUPERVISED GRAPH CONVOLUTIONAL HASHING NETWORK FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Shen, Zhanjian
    Zhai, Deming
    Liu, Xianming
    Jiang, Junjun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2366 - 2370
  • [23] Multi-scale Dilated Convolutional Neural Network Model Based on Attention Mechanism
    Wang J.
    Lai X.
    Lei J.
    Zhang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (06): : 497 - 508
  • [24] Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach
    Wang, Jiaying
    Li, Yaxin
    Shan, Jing
    Bao, Jinling
    Zong, Chuanyu
    Zhao, Liang
    IEEE ACCESS, 2019, 7 : 171548 - 171558
  • [25] A deep convolutional neural network based approach for vehicle classification using large-scale GPS trajectory data
    Dabiri, Sina
    Markovic, Nikola
    Heaslip, Kevin
    Reddy, Chandan K.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 116
  • [26] A convolutional network and attention mechanism-based approach to predict protein-RNA binding residues
    Li, Ke
    Wu, Hongwei
    Yue, Zhenyu
    Sun, Yu
    Xia, Chuan
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 105
  • [27] Crop Disease Recognition Based on Attention Mechanism and Multi-scale Residual Network
    Huang L.
    Luo Y.
    Yang X.
    Yang G.
    Wang D.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (10): : 264 - 271
  • [28] Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism
    Che, Mingxuan
    Yao, Kui
    Che, Chao
    Cao, Zhangwei
    Kong, Fanchen
    FUTURE INTERNET, 2021, 13 (01): : 1 - 10
  • [29] Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism
    Qing, Yuhao
    Liu, Wenyi
    REMOTE SENSING, 2021, 13 (03) : 1 - 18
  • [30] Deep residual convolutional neural network based on hybrid attention mechanism for ecological monitoring of marine fishery
    Liu, Jiangxun
    Zhang, Lei
    Li, Yanfei
    Liu, Hui
    ECOLOGICAL INFORMATICS, 2023, 77