Geospatial Mapping of Large-Scale Electric Power Grids: A Residual Graph Convolutional Network-Based Approach with Attention Mechanism

被引:0
|
作者
Ahshan, Razzaqul [1 ]
Abid, Shadman [2 ]
Al-Abri, Mohammed [2 ,3 ]
机构
[1] Sultan Qaboos Univ, Coll Engn, Dept Elect & Comp Engn, Al Khoud 123, Oman
[2] Sultan Qaboos Univ, Nanotechnol Res Ctr, Al Khoud 123, Oman
[3] Sultan Qaboos Univ, Coll Engn, Dept Petr & Chem Engn, Al Khoud 123, Oman
关键词
Deep learning; Graph convolutional network; Energy infrastructure; Geospatial mapping; Attention mechanism;
D O I
10.1016/j.egyai.2025.100486
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise geospatial mapping of grid infrastructure is essential for the effective development and administration of large-scale electrical infrastructure. The application of deep learning techniques in predicting regional energy network architecture utilizing extensive datasets of geographical information systems (GISs) has yet to be thoroughly investigated in previous research works. Moreover, although graph convolutional networks (GCNs) have been proven to be effective in capturing the complex linkages within graph-structured data, the computationally demanding nature of modern energy grids necessitates additional computational contributions. Hence, this research introduces a novel residual GCN with attention mechanism for mapping critical energy infrastructure components in geographic contexts. The proposed model accurately predicts the geographic locations and links of large-scale grid infrastructure, such as poles, electricity service points, and substations. The proposed framework is assessed on the Sultanate of Oman's regional energy grid and further validated on Nigeria's electricity transmission network database. The obtained findings showcase the model's capacity to accurately predict infrastructure components and their spatial relationships. Results show that the proposed method achieves a link-prediction accuracy of 95.88% for the Omani network and 92.98% for the Nigerian dataset. Furthermore, the proposed model achieved R2 values of 0.99 for both datasets in terms of regression. Therefore, the proposed architecture facilitates multifaceted assessment and enhances the capacity to capture the inherent geospatial aspects of large-scale energy distribution networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A combined traffic flow forecasting model based on graph convolutional network and attention mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (12):
  • [2] A subgraph sampling method for training large-scale graph convolutional network
    Zhang, Qi
    Sun, Yanfeng
    Hu, Yongli
    Wang, Shaofan
    Yin, Baocai
    INFORMATION SCIENCES, 2023, 649
  • [3] Robust Clustering Model Based on Attention Mechanism and Graph Convolutional Network
    Xia, Hui
    Shao, Shushu
    Hu, Chunqiang
    Zhang, Rui
    Qiu, Tie
    Xiao, Fu
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5203 - 5215
  • [4] Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism
    Wang, Shengchang
    Qiao, Jiaqing
    Feng, Shou
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] Performance Evaluation of Graph Neural Network-Based RouteNet Model with Attention Mechanism
    Dhamala, Binita Kusum
    Dawadi, Babu R.
    Manzoni, Pietro
    Acharya, Baikuntha Kumar
    FUTURE INTERNET, 2024, 16 (04)
  • [6] Predicting station-level hourly demand in a large-scale bike sharing network: A graph convolutional neural network approach
    Lin, Lei
    He, Zhengbing
    Peeta, Srinivas
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 97 : 258 - 276
  • [7] Classification method of lithographic layout patterns based on graph convolutional network with graph attention mechanism
    Zhang, Junbi
    Ma, Xu
    Zhang, Shengen
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2023, 22 (03):
  • [8] Attention-Based Graph Summarization for Large-Scale Information Retrieval
    Shabani, Nasrin
    Beheshti, Amin
    Jolfaei, Alireza
    Wu, Jia
    Haghighi, Venus
    Najafabadi, Maryam Khanian
    Foo, Jin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 6224 - 6235
  • [9] Study of crystal properties based on attention mechanism and crystal graph convolutional neural network
    Wang, Buwei
    Fan, Qian
    Yue, Yunliang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (19)
  • [10] ResGAT: an improved graph neural network based on multi-head attention mechanism and residual network for paper classification
    Huang, Xuejian
    Wu, Zhibin
    Wang, Gensheng
    Li, Zhipeng
    Luo, Yuansheng
    Wu, Xiaofang
    SCIENTOMETRICS, 2024, 129 (02) : 1015 - 1036