Simultaneous Structural Monitoring over Optical Ground Wire and Optical Phase Conductor via Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry

被引:0
作者
Canudo, Jorge [1 ,2 ]
Sevillano, Pascual [1 ]
Iranzo, Andrea [2 ]
Kwik, Sacha [3 ]
Preciado-Garbayo, Javier [2 ]
Subias, Jesus [1 ]
机构
[1] Univ Zaragoza, Dept Appl Phys, Zaragoza 50009, Spain
[2] Aragon Photon Labs, Zaragoza 50009, Spain
[3] Red Electr Espana SAU, Alcobendas 28109, Spain
关键词
distributed acoustic sensing; Rayleigh scattering; phase-sensitive OTDR; sag measurement; overhead line monitoring; PHI-OTDR; TEMPERATURE; RESOLUTION; STRAIN;
D O I
10.3390/s24227388
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Optimizing the use of existing high-voltage transmission lines demands real-time condition monitoring to ensure structural integrity and continuous service. Operating these lines at the current capacity is limited by safety margins based on worst-case weather scenarios, as exceeding these margins risks bringing conductors dangerously close to the ground. The integration of optical fibers within modern transmission lines enables the use of Distributed Fiber Optic Sensing (DFOS) technology, with Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry (CP-Phi OTDR) proving especially effective for this purpose. CP-Phi OTDR measures wind-induced vibrations along the conductor, allowing for an analysis of frequency-domain vibration modes that correlate with conductor length and sag across spans. This monitoring system, capable of covering distances up to 40 km from a single endpoint, enables dynamic capacity adjustments for optimized line efficiency. Beyond sag monitoring, CP-Phi OTDR provides robust detection of external threats, including environmental interference and mechanical intrusions, which could compromise cable stability. By simultaneously monitoring the Optical Phase Conductor (OPPC) and Optical Ground Wire (OPGW), this study offers the first comprehensive, real-time evaluation of both structural integrity and potential external aggressions on overhead transmission lines. The findings demonstrate that high-frequency data offer valuable insights for classifying mechanical intrusions and environmental interferences based on spectral content, while low-frequency data reveal the diurnal temperature-induced sag evolution, with distinct amplitude responses for each cable. These results affirm CP-Phi OTDR's unique capacity to enhance line safety, operational efficiency, and proactive maintenance by delivering precise, real-time assessments of both structural integrity and external threats.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Overhead Transmission Line Sag Monitoring Using a Chirped-Pulse Phase-Sensitive OTDR [J].
Canudo, Jorge ;
Sevillano, Pascual ;
Iranzo, Andrea ;
Kwik, Sacha ;
Preciado-Garbayo, Javier ;
Subias, Jesus .
IEEE SENSORS JOURNAL, 2024, 24 (02) :1988-1995
[2]  
Colle S., P 2004 53 INT WIR CA, P548
[3]   Distributed Acoustic Sensing Using Chirped-Pulse Phase-Sensitive OTDR Technology [J].
Fernandez-Ruiz, Maria R. ;
Costa, Luis ;
Martins, Hugo F. .
SENSORS, 2019, 19 (20)
[4]   Laser Phase-Noise Cancellation in Chirped-Pulse Distributed Acoustic Sensors [J].
Fernandez-Ruiz, Maria R. ;
Pastor-Graells, Juan ;
Martins, Hugo F. ;
Garcia-Ruiz, Andres ;
Martin-Lopez, Sonia ;
Gonzalez-Herraez, Miguel .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (04) :979-985
[5]   On the sensitivity of distributed acoustic sensing [J].
Gabai, Haniel ;
Eyal, Avishay .
OPTICS LETTERS, 2016, 41 (24) :5648-5651
[6]   Overview of radiation induced point defects in silica-based optical fibers [J].
Girard S. ;
Alessi A. ;
Richard N. ;
Martin-Samos L. ;
De Michele V. ;
Giacomazzi L. ;
Agnello S. ;
Francesca D.D. ;
Morana A. ;
Winkler B. ;
Reghioua I. ;
Paillet P. ;
Cannas M. ;
Robin T. ;
Boukenter A. ;
Ouerdane Y. .
Reviews in Physics, 2019, 4
[7]  
Godard B., 2019, P INT WORKSH ATM IC, P1
[8]   Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective [J].
Gorshkov, Boris G. ;
Yuksel, Kivilcim ;
Fotiadi, Andrei A. ;
Wuilpart, Marc ;
Korobko, Dmitry A. ;
Zhirnov, Andrey A. ;
Stepanov, Konstantin V. ;
Turov, Artem T. ;
Konstantinov, Yuri A. ;
Lobach, Ivan A. .
SENSORS, 2022, 22 (03)
[9]  
Hlalele T.S., 2013, Int. J. Eng. Adv. Technol. (IJEAT), V3, P297
[10]  
Hongwei Man, 2020, Journal of Physics: Conference Series, V1654, DOI 10.1088/1742-6596/1654/1/012090