A Multi-Objective Evolutionary Approach to Discover Explainability Tradeoffs when Using Linear Regression to Effectively Model the Dynamic Thermal Behaviour of Electrical Machines

被引:0
|
作者
Banda T.M. [1 ]
ZAvoianu A.-C. [1 ]
Petrovski A. [1 ]
Wöckinger D. [2 ]
Bramerdorfer G. [2 ]
机构
[1] National Subsea Centre, Robert Gordon University, Aberdeen
[2] Institute for Electrical Drives and Power Electronics, Johannes Kepler University, Linz
关键词
cost vs accuracy; Data-driven thermal models; electrical machines; explainability; linear regression; NSGA-II; problem formalisation;
D O I
10.1145/3597618
中图分类号
学科分类号
摘要
Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal tradeoffs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study. © 2024 Copyright held by the owner/author(s).
引用
收藏
相关论文
共 17 条
  • [1] A dynamic multi-objective evolutionary algorithm using adaptive reference vector and linear prediction
    Zheng, Jinhua
    Wu, Qishuang
    Zou, Juan
    Yang, Shengxiang
    Hu, Yaru
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [2] MODM: multi-objective diffusion model for dynamic social networks using evolutionary algorithm
    Iram Fatima
    Muhammad Fahim
    Young-Koo Lee
    Sungyoung Lee
    The Journal of Supercomputing, 2013, 66 : 738 - 759
  • [3] MODM: multi-objective diffusion model for dynamic social networks using evolutionary algorithm
    Fatima, Iram
    Fahim, Muhammad
    Lee, Young-Koo
    Lee, Sungyoung
    JOURNAL OF SUPERCOMPUTING, 2013, 66 (02): : 738 - 759
  • [4] Pareto Frontier of a Dynamic Principal–Agent Model with Discrete Actions: An Evolutionary Multi-Objective Approach
    Itza T. Q. Curiel
    Sonia B. Di Giannatale
    Juan A. Herrera
    Katya Rodríguez
    Computational Economics, 2012, 40 : 415 - 443
  • [5] Non-linear identification of a Peltier cell model using evolutionary multi-objective optimization
    Huilcapi, Victor
    Herrero, Juan Manuel
    Blasco, Xavier
    Martinez-Iranzo, Miguel
    IFAC PAPERSONLINE, 2017, 50 (01): : 4448 - 4453
  • [6] Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Ramos, C.
    Sanchis, J.
    BIOSYSTEMS ENGINEERING, 2007, 98 (03) : 335 - 346
  • [7] Optimising Linear Regression for Modelling the Dynamic Thermal Behaviour of Electrical Machines using NSGA-II, NSGA-III and MOEA/D
    Banda, Tiwonge Msulira
    Zavoianu, Alexandru-Ciprian
    Petrovski, Andrei
    Woeckinger, Daniel
    Bramerdorfer, Gerd
    2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 186 - 193
  • [8] Pareto Frontier of a Dynamic Principal-Agent Model with Discrete Actions: An Evolutionary Multi-Objective Approach
    Curiel, Itza T. Q.
    Di Giannatale, Sonia B.
    Herrera, Juan A.
    Rodriguez, Katya
    COMPUTATIONAL ECONOMICS, 2012, 40 (04) : 415 - 443
  • [9] A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach
    Marco A. Panduro
    Carlos A. Brizuela
    David Covarrubias
    Claudio Lopez
    Soft Computing, 2006, 10 : 125 - 131
  • [10] A trade-off curve computation for linear antenna arrays using an evolutionary multi-objective approach
    Panduro, MA
    Brizuela, CA
    Covarrubias, D
    Lopez, C
    SOFT COMPUTING, 2006, 10 (02) : 125 - 131