Concepts and new developments in droplet-based single cell multi-omics

被引:2
作者
Chow, Arthur [1 ]
Lareau, Caleb A. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Computat & Syst Biol Program, New York, NY 10065 USA
关键词
RNA; CHROMATIN; PROTEINS; QUANTIFICATION;
D O I
10.1016/j.tibtech.2024.07.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single cell sequencing technologies have become a fixture in the molecular profiling of cells due to their ease, flexibility, and commercial availability. In particular, partitioning individual cells inside oil droplets via microfluidic reactions enables transcriptomic or multi-omic measurements for thousands of cells in parallel. Complementing the multitude of biological discoveries from genomics analyses, the past decade has brought new capabilities from assay baselines to enable a deeper understanding of the complex data from single cell multi-omics. Here, we highlight four innovations that have improved the reliability and understanding of droplet microfluidic assays. We emphasize new developments that further orient principles of technology development and guidelines for the design, benchmarking, and implementation of new droplet-based methodologies.
引用
收藏
页码:1379 / 1395
页数:17
相关论文
共 50 条
  • [1] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [2] Droplet-based single-cell sequencing: Strategies and applications
    Shang, Yuting
    Wang, Zhengzheng
    Xi, Liqing
    Wang, Yantao
    Liu, Meijing
    Feng, Ying
    Wang, Juan
    Wu, Qingping
    Xiang, Xinran
    Chen, Moutong
    Ding, Yu
    BIOTECHNOLOGY ADVANCES, 2024, 77
  • [3] Benchmarking algorithms for single-cell multi-omics prediction and integration
    Hu, Yinlei
    Wan, Siyuan
    Luo, Yuanhanyu
    Li, Yuanzhe
    Wu, Tong
    Deng, Wentao
    Jiang, Chen
    Jiang, Shan
    Zhang, Yueping
    Liu, Nianping
    Yang, Zongcheng
    Chen, Falai
    Li, Bin
    Qu, Kun
    NATURE METHODS, 2024, 21 (11) : 2182 - +
  • [4] Progress in single-cell multimodal sequencing and multi-omics data integration
    Wang, Xuefei
    Wu, Xinchao
    Hong, Ni
    Jin, Wenfei
    BIOPHYSICAL REVIEWS, 2024, 16 (01) : 13 - 28
  • [5] Methods and applications for single-cell and spatial multi-omics
    Vandereyken, Katy
    Sifrim, Alejandro
    Thienpont, Bernard
    Voet, Thierry
    NATURE REVIEWS GENETICS, 2023, 24 (08) : 494 - 515
  • [6] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [7] Applications of single-cell multi-omics in liver cancer
    Peeters, Frederik
    Cappuyns, Sarah
    Pique-Gili, Marta
    Phillips, Gino
    Verslype, Chris
    Lambrechts, Diether
    Dekervel, Jeroen
    JHEP REPORTS, 2024, 6 (07)
  • [8] Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications
    Lynch, Mark
    Ramalingam, Naveen
    SINGLE MOLECULE AND SINGLE CELL SEQUENCING, 2019, 1129 : 19 - 26
  • [9] Early Primate Embryo Development Meets Single-cell Multi-omics
    Pan, Zhi-Hui
    Guo, Rong-Rong
    Zhang, You-Yue
    Tan, Tao
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2024, 51 (09) : 2000 - 2015
  • [10] Multi-omics and single cell characterization of cancer immunosenescence landscape
    Wei, Qiuxia
    Chen, Ruizhi
    He, Xue
    Qu, Yanan
    Yan, Changjian
    Liu, Xiaoni
    Liu, Jing
    Luo, Jiahao
    Yu, Zining
    Hu, Wenping
    Wang, Liqun
    Lin, Xiaoya
    Wu, Chaoling
    Xiao, Jinyuan
    Zhou, Haibo
    Wang, Jing
    Zhu, Mingxia
    Yang, Ping
    Chen, Yingtong
    Tan, Qilong
    Yuan, Xiaoliang
    Jing, Hongmei
    Zhang, Weilong
    SCIENTIFIC DATA, 2024, 11 (01)