Deep learning-based wall crack detection

被引:0
|
作者
Zheng, Zujia [1 ]
Yang, Kui [1 ]
机构
[1] Office of Infrastructure, Wuhan University of Science and Technology, Hubei, Wuhan,430081, China
关键词
Complex networks - Deep learning;
D O I
10.1504/IJWMC.2024.140271
中图分类号
学科分类号
摘要
This study addresses the issues of high weight and complexity in the YOLOv4 network and presents an improved wall crack detection method based on it. The approach involves replacing YOLOv4’s backbone feature extraction network with MobileNetV2 and employing deep separable convolution to reduce model complexity. Additionally, the SENet attention mechanism is integrated to counteract accuracy loss due to lightweighting. The study also includes data set construction and annotation. Experimental results demonstrate that this method significantly reduces network weight, parameters and computational requirements while maintaining high detection accuracy, making it suitable for various wall crack detection tasks. Copyright © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:118 / 124
相关论文
共 50 条
  • [1] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967
  • [2] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [3] Review of Deep Learning-based Crack Detection for Civil Infrastructures
    Deng L.
    Chu H.-H.
    Long L.-Z.
    Wang W.
    Kong X.
    Cao R.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2023, 36 (02): : 1 - 21
  • [4] A Comprehensive Review of Deep Learning-Based Crack Detection Approaches
    Hamishebahar, Younes
    Guan, Hong
    So, Stephen
    Jo, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [5] Deep Learning-based Semantic Segmentation for Crack Detection on Marbles
    Akosman, Sahin Alp
    Oktem, Mert
    Moral, Ozge Taylan
    Kilic, Volkan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [6] A deep learning-based method for hull stiffened plate crack detection
    Ma, Dongliang
    Wang, Deyu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2021, 235 (02) : 570 - 585
  • [7] Deep Learning-Based Crack Detection and Classification for Concrete Structures Inspection
    Nguyen, C. K.
    Kawamura, K.
    Nakamura, H.
    PROCEEDINGS OF THE 17TH EAST ASIAN-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION, EASEC-17 2022, 2023, 302 : 710 - 717
  • [8] Deep Learning-based Concrete Crack Detection Using Hybrid Images
    An, Yun-Kyu
    Jang, Keunyoung
    Kim, Byunghyun
    Cho, Soojin
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598
  • [9] Deep Learning-Based Feature Silencing for Accurate Concrete Crack Detection
    Billah, Umme Hafsa
    La, Hung Manh
    Tavakkoli, Alireza
    SENSORS, 2020, 20 (16) : 1 - 26
  • [10] Vision-based concrete crack detection using deep learning-based models
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2389 - 2403