Scaling relations for heat and momentum transport in sheared Rayleigh-Bénard convection

被引:3
作者
Yerragolam, Guru Sreevanshu [1 ]
Howland, Christopher J. [1 ]
Stevens, Richard J. A. M. [1 ]
Verzicco, Roberto [1 ,2 ,3 ]
Shishkina, Olga [4 ]
Lohse, Detlef [1 ,4 ]
机构
[1] Univ Twente, Dept Sci & Technol, JM Burgers Ctr Fluid Dynam, Phys Fluids Grp,Max Planck Ctr Complex Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[3] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[4] Max Planck Inst Dynam & Selforg, Fassberg 17, Gottingen, Germany
关键词
turbulence simulation; turbulent convection; RAYLEIGH-BENARD CONVECTION; THERMAL-CONVECTION; NUMBER DEPENDENCE; NUSSELT NUMBER; TURBULENT; PRANDTL; FLOWS;
D O I
10.1017/jfm.2024.872
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We provide scaling relations for the Nusselt number Nu and the friction coefficient CS in sheared Rayleigh-B & eacute;nard convection, i.e. in Rayleigh-B & eacute;nard flow with Couette- or Poiseuille-type shear forcing, by extending the Grossmann & Lohse (J. Fluid Mech., vol. 407, 2000, pp. 27-56, Phys. Rev. Lett., vol. 86, 2001, pp. 3316-3319, Phys. Rev. E, vol. 66, 2002, 016305, Phys. Fluids, vol. 16, 2004, pp. 4462-4472) theory to sheared thermal convection. The control parameters for these systems are the Rayleigh number Ra, the Prandtl number Pr and the Reynolds number Re-S that characterises the strength of the imposed shear. By direct numerical simulations and theoretical considerations, we show that, in turbulent Rayleigh-B & eacute;nard convection, the friction coefficients associated with the applied shear and the shear generated by the large-scale convection rolls are both well described by Prandtl's (Ergeb. Aerodyn. Vers. G & ouml;tt., vol. 4, 1932, pp. 18-29) logarithmic friction law, suggesting some kind of universality between purely shear-driven flows and thermal convection. These scaling relations hold well for 10(6) <= Ra <= 10(8), 0.5 <= Pr <= 5.0, and 0 <= Re-S <= 10(4).
引用
收藏
页数:36
相关论文
共 58 条
[21]   Evidence of very long meandering features in the logarithmic region of turbulent boundary layers [J].
Hutchins, N. ;
Marusic, Ivan .
JOURNAL OF FLUID MECHANICS, 2007, 579 :1-28
[22]  
INGERSOL.AP, 1966, J FLUID MECH, V25, P209, DOI 10.1017/S0022112066001617
[23]  
Kays W.M., 1993, Convective heat and mass transfer
[24]  
Kerr RM, 2000, J FLUID MECH, V419, P325, DOI 10.1017/S0022112000001464
[25]   Comparison of computational codes for direct numerical simulations of turbulent Rayleigh-Benard convection [J].
Kooij, Gijs L. ;
Botchev, Mikhail A. ;
Frederix, Edo M. A. ;
Geurts, Bernard J. ;
Horn, Susanne ;
Lohse, Detlef ;
van der Poel, Erwin P. ;
Shishkina, Olga ;
Stevens, Richard J. A. M. ;
Verzicco, Roberto .
COMPUTERS & FLUIDS, 2018, 166 :1-8
[26]   TURBULENT THERMAL CONVECTION AT ARBITRARY PRANDTL NUMBER [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1962, 5 (11) :1374-1389
[27]   Extreme-scale motions in turbulent plane Couette flows [J].
Lee, Myoungkyu ;
Moser, Robert D. .
JOURNAL OF FLUID MECHANICS, 2018, 842 :128-145
[28]   CROSSOVER FROM HIGH TO LOW-REYNOLDS-NUMBER TURBULENCE [J].
LOHSE, D .
PHYSICAL REVIEW LETTERS, 1994, 73 (24) :3223-3226
[29]   Ultimate turbulent thermal convection [J].
Lohse, Detlef ;
Shishkina, Olga .
PHYSICS TODAY, 2023, 76 (11) :26-32
[30]   Small-Scale Properties of Turbulent Rayleigh-Benard Convection [J].
Lohse, Detlef ;
Xia, Ke-Qing .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :335-364