Scaling relations for heat and momentum transport in sheared Rayleigh-Bénard convection

被引:3
作者
Yerragolam, Guru Sreevanshu [1 ]
Howland, Christopher J. [1 ]
Stevens, Richard J. A. M. [1 ]
Verzicco, Roberto [1 ,2 ,3 ]
Shishkina, Olga [4 ]
Lohse, Detlef [1 ,4 ]
机构
[1] Univ Twente, Dept Sci & Technol, JM Burgers Ctr Fluid Dynam, Phys Fluids Grp,Max Planck Ctr Complex Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Roma Tor Vergata, Dipartimento Ingn Ind, Via Politecn 1, I-00133 Rome, Italy
[3] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
[4] Max Planck Inst Dynam & Selforg, Fassberg 17, Gottingen, Germany
关键词
turbulence simulation; turbulent convection; RAYLEIGH-BENARD CONVECTION; THERMAL-CONVECTION; NUMBER DEPENDENCE; NUSSELT NUMBER; TURBULENT; PRANDTL; FLOWS;
D O I
10.1017/jfm.2024.872
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We provide scaling relations for the Nusselt number Nu and the friction coefficient CS in sheared Rayleigh-B & eacute;nard convection, i.e. in Rayleigh-B & eacute;nard flow with Couette- or Poiseuille-type shear forcing, by extending the Grossmann & Lohse (J. Fluid Mech., vol. 407, 2000, pp. 27-56, Phys. Rev. Lett., vol. 86, 2001, pp. 3316-3319, Phys. Rev. E, vol. 66, 2002, 016305, Phys. Fluids, vol. 16, 2004, pp. 4462-4472) theory to sheared thermal convection. The control parameters for these systems are the Rayleigh number Ra, the Prandtl number Pr and the Reynolds number Re-S that characterises the strength of the imposed shear. By direct numerical simulations and theoretical considerations, we show that, in turbulent Rayleigh-B & eacute;nard convection, the friction coefficients associated with the applied shear and the shear generated by the large-scale convection rolls are both well described by Prandtl's (Ergeb. Aerodyn. Vers. G & ouml;tt., vol. 4, 1932, pp. 18-29) logarithmic friction law, suggesting some kind of universality between purely shear-driven flows and thermal convection. These scaling relations hold well for 10(6) <= Ra <= 10(8), 0.5 <= Pr <= 5.0, and 0 <= Re-S <= 10(4).
引用
收藏
页数:36
相关论文
共 58 条
[11]   DIRECT NUMERICAL SIMULATIONS OF THE EFFECTS OF SHEAR ON TURBULENT RAYLEIGH-BENARD CONVECTION [J].
DOMARADZKI, JA ;
METCALFE, RW .
JOURNAL OF FLUID MECHANICS, 1988, 193 :499-531
[12]   Heat transport by turbulent Rayleigh-Benard convection in cylindrical samples with aspect ratio one and larger [J].
Funfschilling, D ;
Brown, E ;
Nikolaenko, A ;
Ahlers, G .
JOURNAL OF FLUID MECHANICS, 2005, 536 :145-154
[13]   Scaling in thermal convection: a unifying theory [J].
Grossmann, S ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2000, 407 :27-56
[14]   Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection [J].
Grossmann, S ;
Lohse, D .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016305
[15]   Fluctuations in turbulent Rayleigh-Benard convection: The role of plumes [J].
Grossmann, S ;
Lohse, D .
PHYSICS OF FLUIDS, 2004, 16 (12) :4462-4472
[16]   Thermal convection for large Prandtl numbers [J].
Grossmann, S ;
Lohse, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (15) :3316-3319
[17]   Logarithmic temperature profiles in the ultimate regime of thermal convection [J].
Grossmann, Siegfried ;
Lohse, Detlef .
PHYSICS OF FLUIDS, 2012, 24 (12)
[18]   Multiple scaling in the ultimate regime of thermal convection [J].
Grossmann, Siegfried ;
Lohse, Detlef .
PHYSICS OF FLUIDS, 2011, 23 (04)
[19]   Optimal heat transport in rotating Rayleigh-Bénard convection at large Rayleigh numbers [J].
Hartmann, Robert ;
Yerragolam, Guru S. ;
Verzicco, Roberto ;
Lohse, Detlef ;
Stevens, Richard J. A. M. .
PHYSICAL REVIEW FLUIDS, 2023, 8 (08)
[20]   NONLINEAR-INTERACTIONS BETWEEN CONVECTION, ROTATION AND FLOWS WITH VERTICAL SHEAR [J].
HATHAWAY, DH ;
SOMERVILLE, RCJ .
JOURNAL OF FLUID MECHANICS, 1986, 164 :91-&