Detection and Signal Processing for Near-Field Nanoscale Fourier Transform Infrared Spectroscopy

被引:7
作者
Larson, Jonathan M. [1 ,2 ]
Bechtel, Hans A. [3 ]
Kostecki, Robert [2 ]
机构
[1] Baylor Univ, Dept Chem & Biochem, Waco, TX 76798 USA
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
关键词
infrared nano-spectroscopy; nano-FTIR; nanoscale characterization; SINS; s-SNOM; ABSORPTION-SPECTROSCOPY; NANOSPECTROSCOPY; SCATTERING; MICROSPECTROSCOPY; POLARITONS; RESOLUTION; DYNAMICS; PROBES;
D O I
10.1002/adfm.202406643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Researchers from a broad spectrum of scientific and engineering disciplines are increasingly using scattering-type near-field infrared spectroscopic techniques to characterize materials non-destructively with nanoscale spatial resolution. However, a sub-optimal understanding of a technique's implementation can complicate data interpretation and act as a barrier to entering the field. Here the key detection and processing steps involved in producing scattering-type near-field nanoscale Fourier transform infrared spectra (nano-FTIR) are outlined. The self-contained mathematical and experimental work derives and explains: i) how normalized complex-valued nano-FTIR spectra are generated, ii) why the real and imaginary components of spectra qualitatively relate to dispersion and absorption respectively, iii) a new and generally valid equation for spectra which can be used as a springboard for additional modeling of the scattering processes, and iv) an algebraic expression that can be used to extract an approximation to the sample's local extinction coefficient from nano-FTIR. The algebraic model for weak oscillators is validated with nano-FTIR and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra on samples of polystyrene and Kapton and further provides a pedagogical pathway to cementing some of the technique's key qualitative attributes. Infrared near-field nano-FTIR is increasingly seen as an attractive methodology to characterize the physicochemical properties of materials at the nanoscale. However, complexities associated with technique implementation present challenges to data intuition, and interpretation, and can act as a barrier to entering the field. This work presents a detailed exposition and rigorous mathematical treatment of the technique to alleviate these challenges. image
引用
收藏
页数:16
相关论文
共 89 条
[51]   Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references [J].
Mastel, Stefan ;
Govyadinov, Alexander A. ;
de Oliveira, Thales V. A. G. ;
Amenabar, Iban ;
Hillenbrand, Rainer .
APPLIED PHYSICS LETTERS, 2015, 106 (02)
[52]   Near-field infrared nanospectroscopy of surface phonon-polariton resonances [J].
McArdle, P. ;
Lahneman, D. J. ;
Biswas, Amlan ;
Keilmann, F. ;
Qazilbash, M. M. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[53]   Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants [J].
McLeod, Alexander S. ;
Kelly, P. ;
Goldflam, M. D. ;
Gainsforth, Z. ;
Westphal, A. J. ;
Dominguez, Gerardo ;
Thiemens, Mark H. ;
Fogler, Michael M. ;
Basov, D. N. .
PHYSICAL REVIEW B, 2014, 90 (08)
[54]   Synchrotron infrared nanospectroscopy on a graphene chip [J].
Meireles, Leonel M. ;
Barcelos, Ingrid D. ;
Ferrari, Gustavo A. ;
Neves, Paulo Alexandre A. de A. ;
Freitas, Raul O. ;
Lacerda, Rodrigo G. .
LAB ON A CHIP, 2019, 19 (21) :3678-3684
[55]   Quantifying Nanoscale Electromagnetic Fields in Near-Field Microscopy by Fourier Demodulation Analysis [J].
Mooshammer, Fabian ;
Huber, Markus A. ;
Sandner, Fabian ;
Plankl, Markus ;
Zizlsperger, Martin ;
Huber, Rupert .
ACS PHOTONICS, 2020, 7 (02) :344-351
[56]   Near-Field Infrared Nanospectroscopy Reveals Guest Confinement in Metal-Organic Framework Single Crystals [J].
Moslein, Annika F. ;
Gutierrez, Mario ;
Cohen, Boiko ;
Tan, Jin-Chong .
NANO LETTERS, 2020, 20 (10) :7446-7454
[57]   Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales [J].
Muller, Eric A. ;
Pollard, Benjamin ;
Raschke, Markus B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (07) :1275-1284
[58]  
Nakamoto K., 2009, Infrared and Raman spectra of inorganic and coordination compounds, DOI DOI 10.1002/9780470405840
[59]   Nanoscale Infrared Spectroscopy and Imaging of Catalytic Reactions in Cu2O Crystals [J].
Ni, G. X. ;
Chen, S. ;
Sunku, S. S. ;
Sternbach, A. ;
McLeod, A. S. ;
Xiong, L. ;
Fogler, M. M. ;
Chen, G. ;
Basov, D. N. .
ACS PHOTONICS, 2020, 7 (03) :576-580
[60]   Soliton superlattices in twisted hexagonal boron nitride [J].
Ni, G. X. ;
Wang, H. ;
Jiang, B. -Y. ;
Chen, L. X. ;
Du, Y. ;
Sun, Z. Y. ;
Goldflam, M. D. ;
Frenzel, A. J. ;
Xie, X. M. ;
Fogler, M. M. ;
Basov, D. N. .
NATURE COMMUNICATIONS, 2019, 10 (1)