Engineering Densely Packed Ion-Cluster Electrolytes for Wide-Temperature Lithium-Sulfurized Polyacrylonitrile Batteries

被引:1
作者
Wu, Junxiong [1 ,2 ]
Li, Manxian [1 ,2 ]
Ma, Lianbo [3 ]
Li, Xiaoyan [1 ,2 ]
Chen, Xiaochuan [1 ,2 ]
Long, Jing [1 ,2 ]
Wang, Yaxin [1 ,2 ]
Li, Xuan [1 ,2 ]
Liu, Jiapeng [4 ]
Guo, Zaiping [5 ]
Chen, Yuming [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Environm & Resource Sci, Engn Res Ctr Polymer Green Recycling, Fujian Key Lab Pollut Control & Resource Reuse,Min, Fuzhou 350000, Fujian, Peoples R China
[2] Fujian Normal Univ, Coll Carbon Neutral Modern Ind, Fuzhou 350000, Fujian, Peoples R China
[3] Anhui Univ Technol, Sch Mat Sci & Engn, Key Lab Green Fabricat & Surface Technol Adv Met M, Maanshan 243002, Peoples R China
[4] Sun Yat Sen Univ, Sch Adv Energy, Shenzhen 518107, Peoples R China
[5] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; densely packed ion-clusterelectrolyte; weakly solvating solvent; polysulfideshuttling; wide temperature range; CONVERSION; CATHODE;
D O I
10.1021/acsnano.4c13280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrolyte plays an essential role in the advancement of lithium-sulfur batteries (LSBs), as it not only transports the charge carriers but also extensively influences sulfur conversion mechanisms and electrode-electrolyte interphases formed on the electrode surface, thereby directly impacting battery performance. However, the majority of existing electrolytes suffer from incompatibility with either the Li anode or the sulfur cathode. Here, we develop a densely packed ion-cluster electrolyte (DPIE) through the strategic combination of a weakly solvating solvent and an inert diluent, resulting in the self-assembly of abundant compact ion-pair aggregates within its structure. This peculiar solvation structure promotes fast Li+ desolvation, the formation of robust electrode-electrolyte interphases, and the suppression of polysulfide dissolution. Leveraging the tailored DPIE, room-temperature Li||sulfurized polyacrylonitrile (SPAN) batteries demonstrate 300 stable cycles with a capacity retention of 97.8% and a steady Coulombic efficiency exceeding 99.9%. Even under a limited negative/positive areal capacity ratio of four, the Li||SPAN cells exhibit good stability over 250 cycles with 97.1% capacity retention. Furthermore, Li||SPAN batteries show impressive stability over a wide temperature range spanning from -20 to 60 degrees C and exhibit reversibility at -10 degrees C over 200 cycles. This electrolyte design enables LSBs with prolonged operational lifetimes, rapid charging capabilities, and expanded temperature tolerance.
引用
收藏
页码:32984 / 32994
页数:11
相关论文
共 47 条
  • [1] Solvent selection criteria for temperature-resilient lithium-sulfur batteries
    Cai, Guorui
    Holoubek, John
    Li, Mingqian
    Gao, Hongpeng
    Yin, Yijie
    Yu, Sicen
    Liu, Haodong
    Pascal, Tod A.
    Liu, Ping
    Chen, Zheng
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (28)
  • [2] Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes
    Chen, Wei-Jing
    Li, Bo-Quan
    Zhao, Chang-Xin
    Zhao, Meng
    Yuan, Tong-Qi
    Sun, Run-Cang
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) : 10732 - 10745
  • [3] Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping
    Chen, Xin
    Peng, Linfeng
    Wang, Lihui
    Yang, Jiaqiang
    Hao, Zhangxiang
    Xiang, Jingwei
    Yuan, Kai
    Huang, Yunhui
    Shan, Bin
    Yuan, Lixia
    Xie, Jia
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Cathode Kinetics Evaluation in Lean-Electrolyte Lithium-Sulfur Batteries
    Chen, Zi-Xian
    Cheng, Qian
    Li, Xi-Yao
    Li, Zheng
    Song, Yun-Wei
    Sun, Furong
    Zhao, Meng
    Zhang, Xue-Qiang
    Li, Bo-Quan
    Huang, Jia-Qi
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (30) : 16449 - 16457
  • [5] Quantification of the Dynamic Interface Evolution in High-Efficiency Working Li-Metal Batteries
    Ding, Jun-Fan
    Xu, Rui
    Ma, Xia-Xia
    Xiao, Ye
    Yao, Yu-Xing
    Yan, Chong
    Huang, Jia-Qi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (13)
  • [6] Localized high-concentration electrolytes get more localized through micelle-like structures
    Efaw, Corey M.
    Wu, Qisheng
    Gao, Ningshengjie
    Zhang, Yugang
    Zhu, Haoyu
    Gering, Kevin
    Hurley, Michael F.
    Xiong, Hui
    Hu, Enyuan
    Cao, Xia
    Xu, Wu
    Zhang, Ji-Guang
    Dufek, Eric J.
    Xiao, Jie
    Yang, Xiao-Qing
    Liu, Jun
    Qi, Yue
    Li, Bin
    [J]. NATURE MATERIALS, 2023, 22 (12) : 1531 - 1539
  • [7] Electrolytes with moderate lithium polysulfide solubility for high- performance long- calendar- life lithium-sulfur batteries
    Gao, Xin
    Yu, Zhiao
    Wang, Jingyang
    Zheng, Xueli
    Ye, Yusheng
    Gong, Huaxin
    Xiao, Xin
    Yang, Yufei
    Chen, Yuelang
    Bone, Sharon E.
    Greenburg, Louisa C.
    Zhang, Pu
    Su, Hance
    Affeld, Jordan
    Bao, Zhenan
    Cui, Yi
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (31)
  • [8] Ni Anchored to Hydrogen-Substituted Graphdiyne for Lithium Sulfide Cathodes in Lithium-Sulfur Batteries
    Greenburg, Louisa C.
    Gao, Xin
    Zhang, Pu
    Zheng, Xueli
    Wang, Jingyang
    Vila, Rafael A.
    Cui, Yi
    [J]. NANO LETTERS, 2023, 23 (13) : 5967 - 5974
  • [9] Electrolytes with Solvating Inner Sheath Engineering for Practical Na-S Batteries
    Guo, Dong
    Wang, Jiaao
    Lai, Tianxing
    Henkelman, Graeme
    Manthiram, Arumugam
    [J]. ADVANCED MATERIALS, 2023, 35 (24)
  • [10] Interface engineering toward stable lithium-sulfur batteries
    Guo, Yi
    Niu, Qian
    Pei, Fei
    Wang, Qian
    Zhang, Yun
    Du, Liyu
    Zhang, Yin
    Zhang, Yunsheng
    Zhang, Yueying
    Fan, Ling
    Zhang, Qianyu
    Yuan, Lixia
    Huang, Yunhui
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1330 - 1367