Metal-mesh-integrated lateral nanowire array solar cells for ultra-thin photovoltaic antennas

被引:0
作者
Li, Yao [1 ]
Yan, Xin [1 ]
Li, Yuxi [1 ]
Yuan, Xueguang [1 ]
Zhang, Yang'an [1 ]
Zhang, Jinnan [1 ]
Zhang, Xia [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT-ABSORPTION; SILICON; ENHANCEMENT; PANEL;
D O I
10.1364/OE.537369
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An integrated photovoltaic antenna based on a lateral nanowire array solar cell and metal mesh is proposed and studied by three-dimensional electromagnetic simulation. The results show that the integration of the metal meshed antenna significantly enhances the absorption of the nanowire array due to the diffraction effects of the two-dimensional grating and the excitation of localized surface plasmons. By optimizing the nanowire diameter, antenna linewidth, and gap between them, the integrated solar cell achieves a maximum conversion efficiency of 11.1%, 38% higher than that before integration. The antenna exhibits an operational frequency range of 5.88-6.16 THz (S-11 < 10 dB) and radiation efficiency of 59.617%, which are almost unaffected by the underlying solar cell due to the ultra-small thickness of nanowires. This study may pave the way for the development of ultra-thin flexible high-performance integrated photovoltaic antennas. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:37434 / 37445
页数:12
相关论文
共 35 条
[1]   Double-Layer Microstrip Antenna Integrated With Solar Cells [J].
An, Wenxing ;
Gong, Tian ;
Luo, Yu ;
Wang, Jian .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (12) :2397-2401
[2]   ELECTRON AND HOLE MOBILITIES IN SILICON AS A FUNCTION OF CONCENTRATION AND TEMPERATURE [J].
ARORA, ND ;
HAUSER, JR ;
ROULSTON, DJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1982, 29 (02) :292-295
[3]   Absorption of Light in a Single-Nanowire Silicon Solar Cell Decorated with an Octahedral Silver Nanocrystal [J].
Brittman, Sarah ;
Gao, Hanwei ;
Garnett, Erik C. ;
Yang, Peidong .
NANO LETTERS, 2011, 11 (12) :5189-5195
[4]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/nmat2477, 10.1038/NMAT2477]
[5]   Optimal wavelength scale diffraction gratings for light trapping in solar cells [J].
Chong, Teck Kong ;
Wilson, Jonathan ;
Mokkapati, Sudha ;
Catchpole, Kylie R. .
JOURNAL OF OPTICS, 2012, 14 (02)
[6]  
Drude P., 1900, Ann. Phy., V306, P687
[7]   Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping [J].
Eisenlohr, Johannes ;
Tucher, Nico ;
Hauser, Hubert ;
Graf, Martin ;
Benick, Jan ;
Blaesi, Benedikt ;
Goldschmidt, Jan Christoph ;
Hermle, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 155 :288-293
[8]   Analysis of highly efficient quad-crescent-shaped Si nanowires solar cell [J].
El-Bashar, R. ;
Hussein, M. ;
Hegazy, Salem F. ;
Badr, Y. ;
Hameed, Mohamed Farhat O. ;
Obayya, S. S. A. .
OPTICS EXPRESS, 2021, 29 (09) :13641-13656
[9]   Detailed balance analysis of vertical GaAs nanowire array solar cells: exceeding the Shockley Queisser limit [J].
Haghanifar, Sajad ;
Leu, Paul W. .
OPTICS EXPRESS, 2022, 30 (10) :16145-16158
[10]   Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon [J].
Holm, Jeppe V. ;
Jorgensen, Henrik I. ;
Krogstrup, Peter ;
Nygard, Jesper ;
Liu, Huiyun ;
Aagesen, Martin .
NATURE COMMUNICATIONS, 2013, 4