An interactive dual energy storage mechanism boosts high-performance aqueous zinc-ion batteries

被引:1
|
作者
Gong, Shengen [1 ]
Zhu, Meihua [1 ]
Zhou, Yan [1 ]
Li, Runan [2 ]
Zhang, Jianhua [2 ]
Jia, Xiaoteng [2 ]
Chao, Danming [1 ]
Wang, Caiyun [3 ]
机构
[1] Jilin Univ, Coll Chem, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[3] Univ Wollongong, Intelligent Polymer Res Inst, Fac Engn & Informat Sci, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
XPS;
D O I
10.1039/d4sc05710d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic materials are promising cathodes for aqueous zinc-ion batteries (AZIBs) due to their cost-effectiveness, environmental friendliness, and tunable structures. However, the energy density of AZIBs remains limited by the inherently low capacity and output voltage of organic cathode materials. To address this challenge, we develop a Mn ion-doped polyaniline (PAM) by harnessing the joint merits of the highly reversible doping process of the conjugated backbone and the unique dissolution-deposition behavior of Mn2+ in ZnSO4 electrolyte. The incorporation of Mn2+ into the PANI backbone facilitates the stabilization of PAM at high potentials by lowering the lowest unoccupied molecular orbital (LUMO) energy level, resulting in enhanced output voltage and cycling stability. This new interactive dual energy storage mechanism, illustrated by density functional theory calculations and ex situ characterization, contributes to the improved capacity by employing a dissolution-deposition storage mechanism. The battery showcases a maximum specific capacity of 496.7 mA h g-1 at an ultra-high working voltage of 2.4 V. And the capacity is 213.2 mA h g-1 when the current density reaches 20 A g-1. This molecular design of the pre-doped PANI cathode and the insight into the groundbreaking dual energy storage mechanism offer a new alternative host for high-performance Zn-organic batteries.
引用
收藏
页码:19870 / 19885
页数:16
相关论文
共 50 条
  • [21] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [22] Toward practical aqueous zinc-ion batteries for electrochemical energy storage
    Li, Chang
    Jin, Shuo
    Archer, Lynden A.
    Nazar, Linda F.
    JOULE, 2022, 6 (08) : 1733 - 1738
  • [23] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875
  • [24] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [25] Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries
    Zhao, Jingteng
    Song, Congying
    Ma, Shaobo
    Gao, Qixin
    Li, Zhujie
    Dai, Ying
    Li, Guoxing
    ENERGY STORAGE MATERIALS, 2023, 61
  • [26] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [27] Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Wang, Qianqian
    Zhuang, Yanling
    Wang, Jiangying
    Tao, Daiwen
    Zhang, Qilong
    Cao, Guozhong
    ENERGY STORAGE MATERIALS, 2022, 52 : 250 - 283
  • [28] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Bai, Jiayu
    Hu, Songjie
    Feng, Lirong
    Jin, Xinhui
    Wang, Dong
    Zhang, Kai
    Guo, Xiaohui
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)
  • [29] Bifunctional electrolyte additive ammonium persulfate for high-performance aqueous zinc-ion batteries
    Xu, Yuanmei
    Li, Xueshi
    Wang, Xiatong
    Weng, Qijia
    Sun, Weijun
    MATERIALS TODAY SUSTAINABILITY, 2024, 28
  • [30] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)