Supervised Contrastive Learning for 3D Cross-Modal Retrieval
被引:0
作者:
Choo, Yeon-Seung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South KoreaKorea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South Korea
Choo, Yeon-Seung
[1
]
Kim, Boeun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Elect Technol Inst KETI, Artificial Intelligence Res Ctr, Seongnam 13509, South KoreaKorea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South Korea
Kim, Boeun
[2
]
Kim, Hyun-Sik
论文数: 0引用数: 0
h-index: 0
机构:
Korea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South KoreaKorea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South Korea
Kim, Hyun-Sik
[1
]
Park, Yong-Suk
论文数: 0引用数: 0
h-index: 0
机构:
Korea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South KoreaKorea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South Korea
Park, Yong-Suk
[1
]
机构:
[1] Korea Elect Technol Inst KETI, Contents Convergence Res Ctr, Seoul 03924, South Korea
[2] Korea Elect Technol Inst KETI, Artificial Intelligence Res Ctr, Seongnam 13509, South Korea
Interoperability between different virtual platforms requires the ability to search and transfer digital assets across platforms. Digital assets in virtual platforms are represented in different forms or modalities, such as images, meshes, and point clouds. The cross-modal retrieval of three-dimensional (3D) object representations is challenging due to data representation diversity, making common feature space discovery difficult. Recent studies have been focused on obtaining feature consistency within the same classes and modalities using cross-modal center loss. However, center features are sensitive to hyperparameter variations, making cross-modal center loss susceptible to performance degradation. This paper proposes a new 3D cross-modal retrieval method that uses cross-modal supervised contrastive learning (CSupCon) and the fixed projection head (FPH) strategy. Contrastive learning mitigates the influence of hyperparameters by maximizing feature distinctiveness. The FPH strategy prevents gradient updates in the projection network, enabling the focused training of the backbone networks. The proposed method shows a mean average precision (mAP) increase of 1.17 and 0.14 in 3D cross-modal object retrieval experiments using ModelNet10 and ModelNet40 datasets compared to state-of-the-art (SOTA) methods.
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Zeng, Zhixiong
Xu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Xu, Nan
Mao, Wenji
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Mao, Wenji
Zeng, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Zeng, Zhixiong
Xu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Xu, Nan
Mao, Wenji
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Mao, Wenji
Zeng, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China