Strength-ductility mechanism of combined heterostructured CoCrFeMnNi high-entropy alloy prepared by laser heat-treatment process

被引:0
作者
Chen, Jie [1 ]
Wang, Chengchi [1 ]
Ling, Jianjun [1 ]
Wang, Pengfei [1 ]
Li, Jingge [1 ]
Jin, Haizhou [2 ]
Cao, Yu [1 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Zhejiang Prov Key Lab Laser Proc Robot, Wenzhou 325035, Zhejiang, Peoples R China
[2] Xinhai Valve Co Ltd, Wenzhou 325035, Zhejiang, Peoples R China
关键词
High-entropy alloy; Laser surface heat-treatment; Combined heterostructured structure; Strength-ductility synergy; TENSILE PROPERTIES; DEFORMATION MECHANISMS; ENHANCED STRENGTH; GRAIN-SIZE; MICROSTRUCTURE; BEHAVIOR; EVOLUTION;
D O I
10.1016/j.intermet.2024.108511
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two types of typical combined heterostructured CoCrFeMnNi high-entropy alloys with superior mechanical properties that evade the strength-ductility trade-off are fabricated using laser heat-treatment process. The lamellar grain structure with relatively high microhardness can hardly be observed due to the short time annealing at low temperature (873 K for 5 min) before laser scanning. The hetero-deformation induced strengthening, as well as the excellent deformation ability of the bottom hard region which can enhance the interaction between nanotwin-dislocation and maintains the large microhardness difference among the soft-hard layers, are the main factors that improve the yield strength of CoCrFeMnNi high-entropy alloy. Moreover, the combined heterostructured structure without lamellar deformed bands is demonstrated to have a relatively better uniform elongation, which is attributed to the stronger deformation ability of the non-recrystallized grains in the bottom hard region and the effective delay of the crack growth. Consequently, the combined heterostructured structure without lamellae is a promising way to simultaneously improve the strength and ductility, which can be efficiently prepared by the laser surface heat-treatment technique.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mitigating the adverse effect of grain refinement on the ductility of a metastable high-entropy alloy towards superior strength-ductility synergy
    Sohrabi, Mohammad Javad
    Sadeghpour, Saeed
    Mehranpour, Mohammad Sajad
    Kalhor, Alireza
    Mirzadeh, Hamed
    Roostaei, Milad
    Rodak, Kinga
    Dehghanian, Changiz
    Mahmudi, Reza
    Kim, Hyoung Seop
    [J]. APPLIED MATERIALS TODAY, 2025, 42
  • [22] Microstructural origin of the superior strength-ductility synergy of g′-strengthened high-entropy alloy with heterogeneous grain structure and discontinuous precipitation configuration
    Jang, Tae Jin
    Baek, Ju-Hyun
    Suh, Jin-Yoo
    Zargaran, Alireza
    Sohn, Seok Su
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 984 - 999
  • [23] Addressing the strength-ductility trade-off in a thermomechanical-processed high entropy alloy
    Radi, Amin
    Isil, Canay
    Seyedmohammadi, S. Vegar
    Kim, Hyoung Seop
    Yapici, Guney Guven
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [24] Equiaxed microstructure design enables strength-ductility synergy in the eutectic high-entropy alloy
    Zhang, Zequn
    Huang, Yong
    Xu, Qi
    Fellner, Simon
    Hohenwarter, Anton
    Wurster, Stefan
    Song, Kaikai
    Gammer, Christoph
    Eckert, Jurgen
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 103 - 114
  • [25] Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys
    Wei, Daixiu
    Gong, Wu
    Tsuru, Tomohito
    Lobzenko, Ivan
    Li, Xiaoqing
    Harjo, Stefanus
    Kawasaki, Takuro
    Do, Hyeon-Seok
    Bae, Jae Wung
    Wagner, Christian
    Laplanche, Guillaume
    Koizumi, Yuichiro
    Adachi, Hiroki
    Aoyagi, Kenta
    Chiba, Akihiko
    Lee, Byeong-Joo
    Kim, Hyoung Seop
    Kato, Hidemi
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2022, 159
  • [26] A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance
    Feng, Xiaobin
    Feng, Chuangshi
    Lu, Yang
    [J]. MATERIALS, 2022, 15 (23)
  • [27] Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion
    Yi, Mengling
    Tu, Jian
    Yang, Li
    Zhou, Zhiming
    Chen, Siqi
    Ding, Lipeng
    Du, Yanbin
    Qiu, Yingkun
    Liang, Yanxiang
    [J]. ADDITIVE MANUFACTURING, 2024, 87
  • [28] In-situ formed heterogeneous grain structure in spark-plasma-sintered CoCrFeMnNi high-entropy alloy overcomes the strength-ductility trade-off
    Jiang, Feilong
    Zhao, Cancan
    Liang, Dingshan
    Zhu, Weiwei
    Zhang, Yiwen
    Pan, Shuai
    Ren, Fuzeng
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771
  • [29] A superior combination of strength-ductility in CoCrFeNiMn high-entropy alloy induced by asymmetric rolling and subsequent annealing treatment
    Han, Z. H.
    Liang, S.
    Yang, J.
    Wei, R.
    Zhang, C. J.
    [J]. MATERIALS CHARACTERIZATION, 2018, 145 : 619 - 626
  • [30] Laser 3D printing of CoCrFeMnNi high-entropy alloy
    Gao, Xiaoyu
    Lu, Yunzhuo
    [J]. MATERIALS LETTERS, 2019, 236 : 77 - 80