Strength-ductility mechanism of combined heterostructured CoCrFeMnNi high-entropy alloy prepared by laser heat-treatment process

被引:0
作者
Chen, Jie [1 ]
Wang, Chengchi [1 ]
Ling, Jianjun [1 ]
Wang, Pengfei [1 ]
Li, Jingge [1 ]
Jin, Haizhou [2 ]
Cao, Yu [1 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Zhejiang Prov Key Lab Laser Proc Robot, Wenzhou 325035, Zhejiang, Peoples R China
[2] Xinhai Valve Co Ltd, Wenzhou 325035, Zhejiang, Peoples R China
关键词
High-entropy alloy; Laser surface heat-treatment; Combined heterostructured structure; Strength-ductility synergy; TENSILE PROPERTIES; DEFORMATION MECHANISMS; ENHANCED STRENGTH; GRAIN-SIZE; MICROSTRUCTURE; BEHAVIOR; EVOLUTION;
D O I
10.1016/j.intermet.2024.108511
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two types of typical combined heterostructured CoCrFeMnNi high-entropy alloys with superior mechanical properties that evade the strength-ductility trade-off are fabricated using laser heat-treatment process. The lamellar grain structure with relatively high microhardness can hardly be observed due to the short time annealing at low temperature (873 K for 5 min) before laser scanning. The hetero-deformation induced strengthening, as well as the excellent deformation ability of the bottom hard region which can enhance the interaction between nanotwin-dislocation and maintains the large microhardness difference among the soft-hard layers, are the main factors that improve the yield strength of CoCrFeMnNi high-entropy alloy. Moreover, the combined heterostructured structure without lamellar deformed bands is demonstrated to have a relatively better uniform elongation, which is attributed to the stronger deformation ability of the non-recrystallized grains in the bottom hard region and the effective delay of the crack growth. Consequently, the combined heterostructured structure without lamellae is a promising way to simultaneously improve the strength and ductility, which can be efficiently prepared by the laser surface heat-treatment technique.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Cryogenic strength-ductility mechanism of heterostructured CoCrFeMnNi high-entropy alloy
    Wang, Chengchi
    Cao, Yu
    Li, Jingge
    Peng, Wenhai
    Xin, Dongqun
    Chen, Jie
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 7004 - 7016
  • [2] Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique
    Zhang, Bohong
    Chen, Jie
    Wang, Pengfei
    Sun, Bingtao
    Cao, Yu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 111 : 111 - 119
  • [3] Extraordinary strength-ductility combination in bidirectional heterostructured CoCrFeMnNi high-entropy alloy
    Wang, Chengchi
    Cao, Yu
    Li, Jingge
    Zhu, Dehua
    Chen, Leiqing
    Sun, Jianxiang
    Chen, Jie
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (12):
  • [4] Effects of annealing process parameters on microstructural evolution and strength-ductility combination of CoCrFeMnNi high-entropy alloy
    Wang, Pengfei
    Chen, Jie
    Sun, Bingtao
    Zhu, Dehua
    Cao, Yu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [5] Strength-Ductility Mechanism of CoCrFeMnNi High-Entropy Alloys with Inverse Gradient-Grained Structures
    Chen, Jie
    Hu, Yongqiang
    Wang, Pengfei
    Li, Jingge
    Zheng, Yu
    Lu, Chengtong
    Zhang, Bohong
    Shen, Jiahai
    Cao, Yu
    MATERIALS, 2024, 17 (07)
  • [6] Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy
    Sun, S. J.
    Tian, Y. Z.
    Lin, H. R.
    Lu, S.
    Yang, H. J.
    Zhang, Z. F.
    SCRIPTA MATERIALIA, 2019, 163 : 111 - 115
  • [7] Multiple minor elements improve strength-ductility synergy of a high-entropy alloy
    Zhu, Shuya
    Gan, Kefu
    Yan, Dingshun
    Han, Liuliu
    Wu, Pengfei
    Li, Zhiming
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [8] Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition
    Han, Yu
    Li, Huabing
    Feng, Hao
    Li, Kemei
    Tian, Yanzhong
    Jiang, Zhouhua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 789
  • [9] Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment
    Li, H. G.
    Huang, Y. J.
    Zhao, W. J.
    Chen, T.
    Sun, J. F.
    Wei, D. Q.
    Du, Q.
    Zou, Y. C.
    Lu, Y. Z.
    Zhu, P.
    Lu, X.
    Ngan, A. H. W.
    ADDITIVE MANUFACTURING, 2022, 50
  • [10] Unexpected strength-ductility response in an annealed, metastable, high-entropy alloy
    Nene, S. S.
    Sinha, S.
    Frank, M.
    Liu, K.
    Mishra, R. S.
    McWilliams, B. A.
    Cho, K. C.
    APPLIED MATERIALS TODAY, 2018, 13 : 198 - 206