Classification Strategies for Radar-Based Continuous Human Activity Recognition With Multiple Inputs and Multilabel Output

被引:1
|
作者
Ullmann, Ingrid [1 ]
Guendel, Ronny G. [2 ]
Christian Kruse, Nicolas [2 ]
Fioranelli, Francesco [2 ]
Yarovoy, Alexander
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Microwaves & Photon, Erlangen, Germany
[2] Delft Univ Technol, Microwave Sensing Signals & Syst Grp, Delft, Netherlands
基金
荷兰研究理事会;
关键词
Radar; Sensors; Human activity recognition; Spectrogram; Legged locomotion; Fall detection; Doppler effect; Activities of daily living; deep learning; human activity recognition; multilabel classification; radar;
D O I
10.1109/JSEN.2024.3429549
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fall detection systems can play an important role in assuring safe independent living for vulnerable people. These sensors not only have to detect falls but also have to recognize uncritical, normal activities of daily living in order to differentiate them from falls. Radar sensors are very attractive for human activity recognition thanks to their contactless capabilities and lack of plain videos recorded. In this article, a novel approach to recognize single activities in a continuous stream of radar data is proposed, whereby the stream is divided into windows of fixed length and, then, multilabel classification is used to recognize all activities taking place in these time segments. While the initial feasibility of this approach was presented in an earlier contribution presented at the 2023 IEEE SENSORS conference, in this extended work, additional in-depth studies on critical parameters are performed. Specifically, multiple combinations of different radar data domains/representations (e.g., range-time maps, range-Doppler maps, and spectrograms) and different radar nodes in a network of five cooperating sensors are considered as inputs to two considered multilabel classification networks. In addition, a parametric study on the probability thresholds of the networks to assign labels to specific classes is also performed.
引用
收藏
页码:40251 / 40261
页数:11
相关论文
共 50 条
  • [1] Radar-Based Continuous Human Activity Recognition with Multi-Label Classification
    Ullmann, Ingrid
    Guendel, Ronny G.
    Kruse, Nicolas Christian
    Fioranelli, Francesco
    Yarovoy, Alexander
    2023 IEEE SENSORS, 2023,
  • [2] A Survey on Radar-Based Continuous Human Activity Recognition
    Ullmann, Ingrid
    Guendel, Ronny G.
    Kruse, Nicolas Christian
    Fioranelli, Francesco
    Yarovoy, Alexander
    IEEE JOURNAL OF MICROWAVES, 2023, 3 (03): : 938 - 950
  • [3] Benchmarking Classification Algorithms for Radar-Based Human Activity Recognition
    Fioranelli, Francesco
    Zhu, Simin
    Roldan, Ignacio
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2022, 37 (12) : 37 - 40
  • [4] Deep Learning Techniques for Radar-Based Continuous Human Activity Recognition
    Mehta, Ruchita
    Sharifzadeh, Sara
    Palade, Vasile
    Tan, Bo
    Daneshkhah, Alireza
    Karayaneva, Yordanka
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1493 - 1518
  • [5] FPGA Accelerator for Radar-Based Human Activity Recognition
    Long, Kangjie
    Rao, Chaolin
    Zhang, Xiangyu
    Ye, Wenbin
    Lou, Xin
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 391 - 394
  • [6] Radar-based Dataset Development for Human Activity Recognition
    Ahmed, A.
    Zhang, Y. D.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [7] Radar-Based Continuous Human Activity Recognition Using Multidomain Fusion Vision Transformer
    Qu, Lele
    Li, Xiayang
    Yang, Tianhong
    Wang, Shuang
    IEEE SENSORS JOURNAL, 2025, 25 (06) : 9946 - 9956
  • [8] Radar-based human activity recognition using denoising techniques to enhance classification accuracy
    Yu, Ran
    Du, Yaxin
    Li, Jipeng
    Napolitano, Antonio
    Le Kernec, Julien
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (02): : 277 - 293
  • [9] Radar-based Human Activity Acquisition, Classification and Recognition towards Elderly Fall Prediction
    Beranger, Claire
    Bordat, Alexandre
    Khelif, Mohamed Amine
    Dobias, Petr
    Vu, Ngoc-Son
    Le Kernec, Julien
    Guyard, David
    Romain, Olivier
    2023 26TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2023, 2023, : 95 - 102
  • [10] Radar-Based Whitening-Aided Human Activity Recognition
    Sadeghi-Adl, Zahra
    Ahmad, Fauzia
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,