A Multiband Terahertz Detector in 65-nm CMOS for Spectroscopic Imaging

被引:0
|
作者
Liu, Zhao-Yang [1 ,2 ,3 ]
Qi, Feng [1 ,2 ,3 ]
Wang, Ye-Long [1 ,2 ,3 ]
Liu, Peng-Xiang [1 ,2 ,3 ]
Li, Wei-Fan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang 110169, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110169, Peoples R China
[3] Key Lab Liaoning Prov Terahertz Imaging & Sensing, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Antennas; Broadband antennas; Broadband communication; Loop antennas; Terahertz communications; Terahertz radiation; CMOS process; Voltage control; System-on-chip; Spectral analysis; Spectroscopy; CMOS; multiband; spectroscopic imaging; terahertz (THz) detector; terahertz spectroscopy; THZ; ANTENNA; CAMERA;
D O I
10.1109/TTHZ.2024.3442438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a low-area multiband terahertz (THz) detector structure for spectroscopic imaging, which consists of several narrow-band THz detectors with different detection frequencies. By combining the output of the narrow-band detectors, broadband detection is realized. The detection frequency can be expanded by adding more narrow-band detectors with different detection bands. To reduce the whole area of the detector, a loop antenna is used in each narrow-band detector to realize a nestable architecture, where the high-frequency antennas are successively placed in the low-frequency antennas with the same center position. The area is determined only by the narrow-band detector with the lowest detection frequency. Each of the narrow-band detectors adopts a conventional self-mixing detection structure, including an FET-based power detection circuit, an on-chip loop antenna, and a matching network. Two spiral structures are proposed as the matching network to improve the performance of each narrow-band detector. Using the multiband detector structure, a detector with eight frequency bands has been implemented in the 65-nm CMOS process, which achieves effective detection in the 75-1100 GHz range with an area of only 244 x 244 mu m(2). A peak voltage responsivity (R-v) of 1.4 kV/W and a minimum noise equivalent power of 17 pW/Hz(1/2) are achieved. A set of spectrum analysis experiments and imaging experiments verify the practicability of the multiband detector structure.
引用
收藏
页码:781 / 790
页数:10
相关论文
共 50 条
  • [31] A 100-GHz Balanced FET Frequency Doubler in 65-nm CMOS
    Varonen, Mikko
    Karkkainen, Mikko
    Sandstrom, Dan
    Halonen, Kari A. I.
    2011 6TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE, 2011, : 105 - 107
  • [32] Multifingers capacitances modeling of 65-Nm CMOS transistor by unit cell method
    Agung, Alit Apriyana Anak
    Zhang, Yue Ping
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2012, 22 (03) : 297 - 307
  • [33] 0.39-0.45THz Symmetric MOS-Varactor Frequency Tripler in 65-nm CMOS
    Ahmad, Zeshan
    Kim, Insoo
    Kenneth, K. O.
    PROCEEDINGS OF THE 2015 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC 2015), 2015, : 275 - 278
  • [34] A 65-nm CMOS Prototype Chip With Monolithic Pixel Sensors and Fast Front-End Electronics
    Gaioni, Luigi
    Manghisoni, Massimo
    Ratti, Lodovico
    Re, Valerio
    Traversi, Gianluca
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) : 3304 - 3311
  • [35] A D-Band Two-Way Differential Power Divider on 65-nm CMOS Process
    Choi, Ui-Gyu
    Yang, Jong-Ryul
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (03): : 279 - 282
  • [36] A Compact 57-67 GHz Bidirectional LNAPA in 65-nm CMOS Technology
    Meng, Fanyi
    Ma, Kaixue
    Yeo, Kiat Seng
    Boon, Chirn Chye
    Yi, Xiang
    Sun, Junyi
    Feng, Guangyin
    Xu, Shanshan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (08) : 628 - 630
  • [37] An E-Band High-Gain LNA in 65-nm RF CMOS
    Shi, Dehui
    Deng, Dongqin
    Zhang, Shuhao
    Wang, Hao
    Chang, Sheng
    Huang, Qijun
    He, Jin
    2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [38] Study of SEU Sensitivity of SRAM-Based Radiation Monitors in 65-nm CMOS
    Wang, Jialei
    Prinzie, Jeffrey
    Coronetti, Andrea
    Thys, S.
    Alia, Ruben Garcia
    Leroux, Paul
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) : 913 - 920
  • [39] A 57-66 GHz Medium Power Amplifier in 65-nm CMOS Technology
    Hsieh, Chia-Yu
    Kuo, Jhe-Jia
    Tsai, Zuo-Min
    Lin, Kun-You
    2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 1617 - 1620
  • [40] A 0.3 THz Radiating Active x27 Frequency Multiplier Chain With 1 mW Radiated Power in CMOS 65-nm
    Jameson, Samuel
    Socher, Eran
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (04) : 645 - 648