A Multiband Terahertz Detector in 65-nm CMOS for Spectroscopic Imaging

被引:0
|
作者
Liu, Zhao-Yang [1 ,2 ,3 ]
Qi, Feng [1 ,2 ,3 ]
Wang, Ye-Long [1 ,2 ,3 ]
Liu, Peng-Xiang [1 ,2 ,3 ]
Li, Wei-Fan [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang 110169, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110169, Peoples R China
[3] Key Lab Liaoning Prov Terahertz Imaging & Sensing, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Antennas; Broadband antennas; Broadband communication; Loop antennas; Terahertz communications; Terahertz radiation; CMOS process; Voltage control; System-on-chip; Spectral analysis; Spectroscopy; CMOS; multiband; spectroscopic imaging; terahertz (THz) detector; terahertz spectroscopy; THZ; ANTENNA; CAMERA;
D O I
10.1109/TTHZ.2024.3442438
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a low-area multiband terahertz (THz) detector structure for spectroscopic imaging, which consists of several narrow-band THz detectors with different detection frequencies. By combining the output of the narrow-band detectors, broadband detection is realized. The detection frequency can be expanded by adding more narrow-band detectors with different detection bands. To reduce the whole area of the detector, a loop antenna is used in each narrow-band detector to realize a nestable architecture, where the high-frequency antennas are successively placed in the low-frequency antennas with the same center position. The area is determined only by the narrow-band detector with the lowest detection frequency. Each of the narrow-band detectors adopts a conventional self-mixing detection structure, including an FET-based power detection circuit, an on-chip loop antenna, and a matching network. Two spiral structures are proposed as the matching network to improve the performance of each narrow-band detector. Using the multiband detector structure, a detector with eight frequency bands has been implemented in the 65-nm CMOS process, which achieves effective detection in the 75-1100 GHz range with an area of only 244 x 244 mu m(2). A peak voltage responsivity (R-v) of 1.4 kV/W and a minimum noise equivalent power of 17 pW/Hz(1/2) are achieved. A set of spectrum analysis experiments and imaging experiments verify the practicability of the multiband detector structure.
引用
收藏
页码:781 / 790
页数:10
相关论文
共 50 条
  • [11] Design of a Low-Voltage EEG Detector Based on a Chopping Amplifier in CMOS 65-nm
    Seutin, Nathan
    Garcia-Vazquez, Hugo
    Quenon, Alexandre
    Dualibe, Fortunato Carlos
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2018, : 261 - 264
  • [12] 65-nm CMOS Monolithically Integrated Subterahertz Transmitter
    Hu, Xin
    Tripodi, Lorenzo
    Matters-Kammerer, Marion K.
    Cheng, Shi
    Rydberg, Anders
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (09) : 1182 - 1184
  • [13] 44-GHz, 0.5-V Compact Power Detector IC in 65-nm CMOS
    Xu, Kangyang
    Yang, Xin
    Wang, Wei
    Yoshimasu, Toshihiko
    2014 IEEE INTERNATIONAL WIRELESS SYMPOSIUM (IWS), 2014,
  • [14] Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process
    Fang, Tong
    Liu, Zhao-yang
    Liu, Li-yuan
    Li, Yuan-yuan
    Liu, Jun-qi
    Liu, Jian
    Wu, Nan-jian
    2017 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC), 2017, : 189 - 192
  • [15] W-band Energy Harvesting Rectenna Array in 65-nm CMOS
    Shaulov, Edoh
    Jameson, Samuel
    Socher, Eran
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 303 - 306
  • [16] Radiation Hardened Pulsed-Latches in 65-nm CMOS
    Shah, Jaspal Singh
    Sachdev, Manoj
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [17] A 77 GHz Automotive Radar Transmitter in 65-nm CMOS
    Duong, H. T.
    Le, H. V.
    Huynh, A. T.
    Yang, B.
    Zhang, F.
    Evans, Robin J.
    Skafidas, E.
    PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2012, : 171 - 173
  • [18] A 900-MHz Direct Delta-Sigma Receiver in 65-nm CMOS
    Koli, Kimmo
    Kallioinen, Sami
    Jussila, Jarkko
    Sivonen, Pete
    Parssinen, Aarno
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (12) : 2807 - 2818
  • [19] A 14-91 GHz Distributed Amplifier in 65-nm CMOS
    Hsu, Ching-Min
    Wang, Yunshan
    Wang, Huei
    2020 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2020, : 1009 - 1011
  • [20] A Mirrored Current-conveyor Transimpedance Amplifier in 65-nm CMOS
    Yoon, Daseul
    Joo, Ji-Eun
    Park, Sung Min
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2020, 20 (06) : 526 - 532